Skip to content

zamba.models.efficientnet_models

Classes

TimeDistributedEfficientNet (ZambaVideoClassificationLightningModule)

Source code in zamba/models/efficientnet_models.py
class TimeDistributedEfficientNet(ZambaVideoClassificationLightningModule):
    def __init__(
        self, num_frames=16, finetune_from: Optional[Union[os.PathLike, str]] = None, **kwargs
    ):

        super().__init__(**kwargs)

        if finetune_from is None:
            efficientnet = timm.create_model("efficientnetv2_rw_m", pretrained=True)
            efficientnet.classifier = nn.Identity()
        else:
            efficientnet = self.load_from_checkpoint(finetune_from).base.module

        # freeze base layers
        for param in efficientnet.parameters():
            param.requires_grad = False

        num_backbone_final_features = efficientnet.num_features

        self.backbone = torch.nn.ModuleList(
            [
                efficientnet.get_submodule("blocks.5"),
                efficientnet.conv_head,
                efficientnet.bn2,
                efficientnet.act2,
                efficientnet.global_pool,
            ]
        )

        self.base = TimeDistributed(efficientnet, tdim=1)
        self.classifier = nn.Sequential(
            nn.Linear(num_backbone_final_features, 256),
            nn.Dropout(0.2),
            nn.ReLU(),
            nn.Linear(256, 64),
            nn.Flatten(),
            nn.Linear(64 * num_frames, self.num_classes),
        )

        self.save_hyperparameters("num_frames")

    def forward(self, x):
        self.base.eval()
        x = self.base(x)
        return self.classifier(x)

Attributes

CHECKPOINT_HYPER_PARAMS_KEY inherited
CHECKPOINT_HYPER_PARAMS_NAME inherited
CHECKPOINT_HYPER_PARAMS_TYPE inherited
T_destination inherited
automatic_optimization: bool inherited property writable

If set to False you are responsible for calling .backward(), .step(), .zero_grad().

current_epoch: int inherited property readonly

The current epoch in the Trainer.

If no Trainer is attached, this propery is 0.

device: Union[str, torch.device] inherited property readonly
dtype: Union[str, torch.dtype] inherited property writable
dump_patches: bool inherited

This allows better BC support for :meth:load_state_dict. In :meth:state_dict, the version number will be saved as in the attribute _metadata of the returned state dict, and thus pickled. _metadata is a dictionary with keys that follow the naming convention of state dict. See _load_from_state_dict on how to use this information in loading.

If new parameters/buffers are added/removed from a module, this number shall be bumped, and the module's _load_from_state_dict method can compare the version number and do appropriate changes if the state dict is from before the change.

example_input_array: Any inherited property writable

The example input array is a specification of what the module can consume in the :meth:forward method. The return type is interpreted as follows:

  • Single tensor: It is assumed the model takes a single argument, i.e., model.forward(model.example_input_array)
  • Tuple: The input array should be interpreted as a sequence of positional arguments, i.e., model.forward(*model.example_input_array)
  • Dict: The input array represents named keyword arguments, i.e., model.forward(**model.example_input_array)
global_rank: int inherited property readonly

The index of the current process across all nodes and devices.

global_step: int inherited property readonly

Total training batches seen across all epochs.

If no Trainer is attached, this propery is 0.

hparams: Union[pytorch_lightning.utilities.parsing.AttributeDict, dict, argparse.Namespace] inherited property readonly

The collection of hyperparameters saved with :meth:save_hyperparameters. It is mutable by the user. For the frozen set of initial hyperparameters, use :attr:hparams_initial.

Returns:

Type Description
Union[AttributeDict, dict, Namespace]

mutable hyperparameters dicionary

hparams_initial: AttributeDict inherited property readonly

The collection of hyperparameters saved with :meth:save_hyperparameters. These contents are read-only. Manual updates to the saved hyperparameters can instead be performed through :attr:hparams.

Returns:

Type Description
AttributeDict

immutable initial hyperparameters

loaded_optimizer_states_dict: dict inherited property writable
local_rank: int inherited property readonly

The index of the current process within a single node.

logger inherited property readonly

Reference to the logger object in the Trainer.

model_size: float inherited property readonly

Returns the model size in MegaBytes (MB)

!!! note This property will not return correct value for Deepspeed (stage 3) and fully-sharded training.

on_gpu inherited property readonly

Returns True if this model is currently located on a GPU.

Useful to set flags around the LightningModule for different CPU vs GPU behavior.

truncated_bptt_steps: int inherited property writable

Enables Truncated Backpropagation Through Time in the Trainer when set to a positive integer.

It represents the number of times :meth:training_step gets called before backpropagation. If this is > 0, the :meth:training_step receives an additional argument hiddens and is expected to return a hidden state.

Methods

__init__(self, num_frames = 16, finetune_from: Union[os.PathLike, str] = None, **kwargs) special
Source code in zamba/models/efficientnet_models.py
def __init__(
    self, num_frames=16, finetune_from: Optional[Union[os.PathLike, str]] = None, **kwargs
):

    super().__init__(**kwargs)

    if finetune_from is None:
        efficientnet = timm.create_model("efficientnetv2_rw_m", pretrained=True)
        efficientnet.classifier = nn.Identity()
    else:
        efficientnet = self.load_from_checkpoint(finetune_from).base.module

    # freeze base layers
    for param in efficientnet.parameters():
        param.requires_grad = False

    num_backbone_final_features = efficientnet.num_features

    self.backbone = torch.nn.ModuleList(
        [
            efficientnet.get_submodule("blocks.5"),
            efficientnet.conv_head,
            efficientnet.bn2,
            efficientnet.act2,
            efficientnet.global_pool,
        ]
    )

    self.base = TimeDistributed(efficientnet, tdim=1)
    self.classifier = nn.Sequential(
        nn.Linear(num_backbone_final_features, 256),
        nn.Dropout(0.2),
        nn.ReLU(),
        nn.Linear(256, 64),
        nn.Flatten(),
        nn.Linear(64 * num_frames, self.num_classes),
    )

    self.save_hyperparameters("num_frames")
add_module(self, name: str, module: Optional[Module]) -> None inherited

Adds a child module to the current module.

The module can be accessed as an attribute using the given name.

Parameters:

Name Type Description Default
name string

name of the child module. The child module can be accessed from this module using the given name

required
module Module

child module to be added to the module.

required
Source code in zamba/models/efficientnet_models.py
def add_module(self, name: str, module: Optional['Module']) -> None:
    r"""Adds a child module to the current module.

    The module can be accessed as an attribute using the given name.

    Args:
        name (string): name of the child module. The child module can be
            accessed from this module using the given name
        module (Module): child module to be added to the module.
    """
    if not isinstance(module, Module) and module is not None:
        raise TypeError("{} is not a Module subclass".format(
            torch.typename(module)))
    elif not isinstance(name, torch._six.string_classes):
        raise TypeError("module name should be a string. Got {}".format(
            torch.typename(name)))
    elif hasattr(self, name) and name not in self._modules:
        raise KeyError("attribute '{}' already exists".format(name))
    elif '.' in name:
        raise KeyError("module name can't contain \".\", got: {}".format(name))
    elif name == '':
        raise KeyError("module name can't be empty string \"\"")
    self._modules[name] = module
add_to_queue(self, queue: <bound method BaseContext.SimpleQueue of <multiprocessing.context.DefaultContext object at 0x7f0704b2dfa0>>) -> None inherited

Appends the :attr:trainer.callback_metrics dictionary to the given queue. To avoid issues with memory sharing, we cast the data to numpy.

Parameters:

Name Type Description Default
queue <bound method BaseContext.SimpleQueue of <multiprocessing.context.DefaultContext object at 0x7f0704b2dfa0>>

the instance of the queue to append the data.

required

.. deprecated:: v1.5 This method was deprecated in v1.5 in favor of DDPSpawnPlugin.add_to_queue and will be removed in v1.7.

Source code in zamba/models/efficientnet_models.py
def add_to_queue(self, queue: torch.multiprocessing.SimpleQueue) -> None:
    """Appends the :attr:`trainer.callback_metrics` dictionary to the given queue. To avoid issues with memory
    sharing, we cast the data to numpy.

    Args:
        queue: the instance of the queue to append the data.

    .. deprecated:: v1.5
        This method was deprecated in v1.5 in favor of `DDPSpawnPlugin.add_to_queue`
        and will be removed in v1.7.
    """
    if self.trainer and isinstance(self.trainer.training_type_plugin, pl.plugins.training_type.DDPSpawnPlugin):
        self.trainer.training_type_plugin.add_to_queue(self.trainer, queue)
aggregate_step_outputs(outputs: Dict[str, numpy.ndarray]) -> Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray] inherited
Source code in zamba/models/efficientnet_models.py
@staticmethod
def aggregate_step_outputs(
    outputs: Dict[str, np.ndarray]
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
    y_true = np.vstack([output["y_true"] for output in outputs])
    y_pred = np.vstack([output["y_pred"] for output in outputs])
    y_proba = np.vstack([output["y_proba"] for output in outputs])

    return y_true, y_pred, y_proba
all_gather(self, data: Union[torch.Tensor, Dict, List, Tuple], group: Optional[Any] = None, sync_grads: bool = False) inherited

Allows users to call self.all_gather() from the LightningModule, thus making the all_gather operation accelerator agnostic. all_gather is a function provided by accelerators to gather a tensor from several distributed processes.

Parameters:

Name Type Description Default
data Union[torch.Tensor, Dict, List, Tuple]

int, float, tensor of shape (batch, ...), or a (possibly nested) collection thereof.

required
group Optional[Any]

the process group to gather results from. Defaults to all processes (world)

None
sync_grads bool

flag that allows users to synchronize gradients for the all_gather operation

False

Returns:

Type Description

A tensor of shape (world_size, batch, ...), or if the input was a collection the output will also be a collection with tensors of this shape.

Source code in zamba/models/efficientnet_models.py
def all_gather(
    self, data: Union[torch.Tensor, Dict, List, Tuple], group: Optional[Any] = None, sync_grads: bool = False
):
    r"""
    Allows users to call ``self.all_gather()`` from the LightningModule, thus making the ``all_gather`` operation
    accelerator agnostic. ``all_gather`` is a function provided by accelerators to gather a tensor from several
    distributed processes.

    Args:
        data: int, float, tensor of shape (batch, ...), or a (possibly nested) collection thereof.
        group: the process group to gather results from. Defaults to all processes (world)
        sync_grads: flag that allows users to synchronize gradients for the all_gather operation

    Return:
        A tensor of shape (world_size, batch, ...), or if the input was a collection
        the output will also be a collection with tensors of this shape.
    """
    group = group if group is not None else torch.distributed.group.WORLD
    all_gather = self.trainer.training_type_plugin.all_gather
    data = convert_to_tensors(data, device=self.device)
    return apply_to_collection(data, torch.Tensor, all_gather, group=group, sync_grads=sync_grads)
apply(self: ~T, fn: Callable[[Module], NoneType]) -> ~T inherited

Applies fn recursively to every submodule (as returned by .children()) as well as self. Typical use includes initializing the parameters of a model (see also :ref:nn-init-doc).

Parameters:

Name Type Description Default
fn

class:Module -> None): function to be applied to each submodule

required

Returns:

Type Description
Module

self

Example::

>>> @torch.no_grad()
>>> def init_weights(m):
>>>     print(m)
>>>     if type(m) == nn.Linear:
>>>         m.weight.fill_(1.0)
>>>         print(m.weight)
>>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
>>> net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[ 1.,  1.],
        [ 1.,  1.]])
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[ 1.,  1.],
        [ 1.,  1.]])
Sequential(
  (0): Linear(in_features=2, out_features=2, bias=True)
  (1): Linear(in_features=2, out_features=2, bias=True)
)
Sequential(
  (0): Linear(in_features=2, out_features=2, bias=True)
  (1): Linear(in_features=2, out_features=2, bias=True)
)
Source code in zamba/models/efficientnet_models.py
def apply(self: T, fn: Callable[['Module'], None]) -> T:
    r"""Applies ``fn`` recursively to every submodule (as returned by ``.children()``)
    as well as self. Typical use includes initializing the parameters of a model
    (see also :ref:`nn-init-doc`).

    Args:
        fn (:class:`Module` -> None): function to be applied to each submodule

    Returns:
        Module: self

    Example::

        >>> @torch.no_grad()
        >>> def init_weights(m):
        >>>     print(m)
        >>>     if type(m) == nn.Linear:
        >>>         m.weight.fill_(1.0)
        >>>         print(m.weight)
        >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
        >>> net.apply(init_weights)
        Linear(in_features=2, out_features=2, bias=True)
        Parameter containing:
        tensor([[ 1.,  1.],
                [ 1.,  1.]])
        Linear(in_features=2, out_features=2, bias=True)
        Parameter containing:
        tensor([[ 1.,  1.],
                [ 1.,  1.]])
        Sequential(
          (0): Linear(in_features=2, out_features=2, bias=True)
          (1): Linear(in_features=2, out_features=2, bias=True)
        )
        Sequential(
          (0): Linear(in_features=2, out_features=2, bias=True)
          (1): Linear(in_features=2, out_features=2, bias=True)
        )
    """
    for module in self.children():
        module.apply(fn)
    fn(self)
    return self
backward(self, loss: Tensor, optimizer: Optional[torch.optim.optimizer.Optimizer], optimizer_idx: Optional[int], *args, **kwargs) -> None inherited

Called to perform backward on the loss returned in :meth:training_step. Override this hook with your own implementation if you need to.

Parameters:

Name Type Description Default
loss Tensor

The loss tensor returned by :meth:training_step. If gradient accumulation is used, the loss here holds the normalized value (scaled by 1 / accumulation steps).

required
optimizer Optional[torch.optim.optimizer.Optimizer]

Current optimizer being used. None if using manual optimization.

required
optimizer_idx Optional[int]

Index of the current optimizer being used. None if using manual optimization.

required

Example::

def backward(self, loss, optimizer, optimizer_idx):
    loss.backward()
Source code in zamba/models/efficientnet_models.py
def backward(
    self, loss: Tensor, optimizer: Optional[Optimizer], optimizer_idx: Optional[int], *args, **kwargs
) -> None:
    """Called to perform backward on the loss returned in :meth:`training_step`. Override this hook with your
    own implementation if you need to.

    Args:
        loss: The loss tensor returned by :meth:`training_step`. If gradient accumulation is used, the loss here
            holds the normalized value (scaled by 1 / accumulation steps).
        optimizer: Current optimizer being used. ``None`` if using manual optimization.
        optimizer_idx: Index of the current optimizer being used. ``None`` if using manual optimization.

    Example::

        def backward(self, loss, optimizer, optimizer_idx):
            loss.backward()
    """
    loss.backward(*args, **kwargs)
bfloat16(self: ~T) -> ~T inherited

Casts all floating point parameters and buffers to bfloat16 datatype.

.. note:: This method modifies the module in-place.

Returns:

Type Description
Module

self

Source code in zamba/models/efficientnet_models.py
def bfloat16(self: T) -> T:
    r"""Casts all floating point parameters and buffers to ``bfloat16`` datatype.

    .. note::
        This method modifies the module in-place.

    Returns:
        Module: self
    """
    return self._apply(lambda t: t.bfloat16() if t.is_floating_point() else t)
buffers(self, recurse: bool = True) -> Iterator[torch.Tensor] inherited

Returns an iterator over module buffers.

Parameters:

Name Type Description Default
recurse bool

if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.

True

Yields:

Type Description
torch.Tensor

module buffer

Example::

>>> for buf in model.buffers():
>>>     print(type(buf), buf.size())
<class 'torch.Tensor'> (20L,)
<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
Source code in zamba/models/efficientnet_models.py
def buffers(self, recurse: bool = True) -> Iterator[Tensor]:
    r"""Returns an iterator over module buffers.

    Args:
        recurse (bool): if True, then yields buffers of this module
            and all submodules. Otherwise, yields only buffers that
            are direct members of this module.

    Yields:
        torch.Tensor: module buffer

    Example::

        >>> for buf in model.buffers():
        >>>     print(type(buf), buf.size())
        <class 'torch.Tensor'> (20L,)
        <class 'torch.Tensor'> (20L, 1L, 5L, 5L)

    """
    for _, buf in self.named_buffers(recurse=recurse):
        yield buf
children(self) -> Iterator[Module] inherited

Returns an iterator over immediate children modules.

Yields:

Type Description
Module

a child module

Source code in zamba/models/efficientnet_models.py
def children(self) -> Iterator['Module']:
    r"""Returns an iterator over immediate children modules.

    Yields:
        Module: a child module
    """
    for name, module in self.named_children():
        yield module
clip_gradients(self, optimizer: Optimizer, gradient_clip_val: Union[int, float] = None, gradient_clip_algorithm: Optional[str] = None) inherited

Handles gradient clipping internally.

!!! note Do not override this method. If you want to customize gradient clipping, consider using :meth:configure_gradient_clipping method.

Parameters:

Name Type Description Default
optimizer Optimizer

Current optimizer being used.

required
gradient_clip_val Union[int, float]

The value at which to clip gradients.

None
gradient_clip_algorithm Optional[str]

The gradient clipping algorithm to use. Pass gradient_clip_algorithm="value" to clip by value, and gradient_clip_algorithm="norm" to clip by norm.

None
Source code in zamba/models/efficientnet_models.py
def clip_gradients(
    self,
    optimizer: Optimizer,
    gradient_clip_val: Optional[Union[int, float]] = None,
    gradient_clip_algorithm: Optional[str] = None,
):
    """Handles gradient clipping internally.

    Note:
        Do not override this method. If you want to customize gradient clipping, consider
        using :meth:`configure_gradient_clipping` method.

    Args:
        optimizer: Current optimizer being used.
        gradient_clip_val: The value at which to clip gradients.
        gradient_clip_algorithm: The gradient clipping algorithm to use. Pass ``gradient_clip_algorithm="value"``
            to clip by value, and ``gradient_clip_algorithm="norm"`` to clip by norm.
    """
    if gradient_clip_val is None:
        gradient_clip_val = self.trainer.gradient_clip_val or 0.0
    elif self.trainer.gradient_clip_val is not None and self.trainer.gradient_clip_val != gradient_clip_val:
        raise MisconfigurationException(
            f"You have set `Trainer(gradient_clip_val={self.trainer.gradient_clip_val!r})`"
            f" and have passed `clip_gradients(gradient_clip_val={gradient_clip_val!r})`."
            " Please use only one of them."
        )

    if gradient_clip_algorithm is None:
        gradient_clip_algorithm = self.trainer.gradient_clip_algorithm or "norm"
    else:
        gradient_clip_algorithm = gradient_clip_algorithm.lower()
        if (
            self.trainer.gradient_clip_algorithm is not None
            and self.trainer.gradient_clip_algorithm != gradient_clip_algorithm
        ):
            raise MisconfigurationException(
                f"You have set `Trainer(gradient_clip_algorithm={self.trainer.gradient_clip_algorithm.value!r})`"
                f" and have passed `clip_gradients(gradient_clip_algorithm={gradient_clip_algorithm!r})"
                " Please use only one of them."
            )

    if not isinstance(gradient_clip_val, (int, float)):
        raise TypeError(f"`gradient_clip_val` should be an int or a float. Got {gradient_clip_val}.")

    if not GradClipAlgorithmType.supported_type(gradient_clip_algorithm.lower()):
        raise MisconfigurationException(
            f"`gradient_clip_algorithm` {gradient_clip_algorithm} is invalid."
            f" Allowed algorithms: {GradClipAlgorithmType.supported_types()}."
        )

    gradient_clip_algorithm = GradClipAlgorithmType(gradient_clip_algorithm)
    self.trainer.precision_plugin.clip_gradients(optimizer, gradient_clip_val, gradient_clip_algorithm)
compute_and_log_metrics(self, y_true: ndarray, y_pred: ndarray, y_proba: ndarray, subset: str) inherited
Source code in zamba/models/efficientnet_models.py
def compute_and_log_metrics(
    self, y_true: np.ndarray, y_pred: np.ndarray, y_proba: np.ndarray, subset: str
):
    self.log(f"{subset}_macro_f1", f1_score(y_true, y_pred, average="macro", zero_division=0))

    # if only two classes, skip top_k accuracy since not enough classes
    if self.num_classes > 2:
        for k in DEFAULT_TOP_K:
            if k < self.num_classes:
                self.log(
                    f"{subset}_top_{k}_accuracy",
                    top_k_accuracy_score(
                        y_true.argmax(
                            axis=1
                        ),  # top k accuracy only supports single label case
                        y_proba,
                        labels=np.arange(y_proba.shape[1]),
                        k=k,
                    ),
                )
    else:
        self.log(f"{subset}_accuracy", accuracy_score(y_true, y_pred))

    for metric_name, label, metric in compute_species_specific_metrics(
        y_true, y_pred, self.species
    ):
        self.log(f"species/{subset}_{metric_name}/{label}", metric)
configure_callbacks(self) inherited

Configure model-specific callbacks. When the model gets attached, e.g., when .fit() or .test() gets called, the list returned here will be merged with the list of callbacks passed to the Trainer's callbacks argument. If a callback returned here has the same type as one or several callbacks already present in the Trainer's callbacks list, it will take priority and replace them. In addition, Lightning will make sure :class:~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint callbacks run last.

Returns:

Type Description

A list of callbacks which will extend the list of callbacks in the Trainer.

Example::

def configure_callbacks(self):
    early_stop = EarlyStopping(monitor="val_acc", mode="max")
    checkpoint = ModelCheckpoint(monitor="val_loss")
    return [early_stop, checkpoint]

!!! note Certain callback methods like :meth:~pytorch_lightning.callbacks.base.Callback.on_init_start will never be invoked on the new callbacks returned here.

Source code in zamba/models/efficientnet_models.py
def configure_callbacks(self):
    """Configure model-specific callbacks. When the model gets attached, e.g., when ``.fit()`` or ``.test()``
    gets called, the list returned here will be merged with the list of callbacks passed to the Trainer's
    ``callbacks`` argument. If a callback returned here has the same type as one or several callbacks already
    present in the Trainer's callbacks list, it will take priority and replace them. In addition, Lightning
    will make sure :class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint` callbacks run last.

    Return:
        A list of callbacks which will extend the list of callbacks in the Trainer.

    Example::

        def configure_callbacks(self):
            early_stop = EarlyStopping(monitor="val_acc", mode="max")
            checkpoint = ModelCheckpoint(monitor="val_loss")
            return [early_stop, checkpoint]

    Note:
        Certain callback methods like :meth:`~pytorch_lightning.callbacks.base.Callback.on_init_start`
        will never be invoked on the new callbacks returned here.
    """
    return []
configure_gradient_clipping(self, optimizer: Optimizer, optimizer_idx: int, gradient_clip_val: Union[int, float] = None, gradient_clip_algorithm: Optional[str] = None) inherited

Perform gradient clipping for the optimizer parameters. Called before :meth:optimizer_step.

Parameters:

Name Type Description Default
optimizer Optimizer

Current optimizer being used.

required
optimizer_idx int

Index of the current optimizer being used.

required
gradient_clip_val Union[int, float]

The value at which to clip gradients. By default value passed in Trainer will be available here.

None
gradient_clip_algorithm Optional[str]

The gradient clipping algorithm to use. By default value passed in Trainer will be available here.

None

Example::

# Perform gradient clipping on gradients associated with discriminator (optimizer_idx=1) in GAN
def configure_gradient_clipping(self, optimizer, optimizer_idx, gradient_clip_val, gradient_clip_algorithm):
    if optimizer_idx == 1:
        # Lightning will handle the gradient clipping
        self.clip_gradients(
            optimizer,
            gradient_clip_val=gradient_clip_val,
            gradient_clip_algorithm=gradient_clip_algorithm
        )
    !!! else
        # implement your own custom logic to clip gradients for generator (optimizer_idx=0)
Source code in zamba/models/efficientnet_models.py
def configure_gradient_clipping(
    self,
    optimizer: Optimizer,
    optimizer_idx: int,
    gradient_clip_val: Optional[Union[int, float]] = None,
    gradient_clip_algorithm: Optional[str] = None,
):
    """Perform gradient clipping for the optimizer parameters. Called before :meth:`optimizer_step`.

    Args:
        optimizer: Current optimizer being used.
        optimizer_idx: Index of the current optimizer being used.
        gradient_clip_val: The value at which to clip gradients. By default value passed in Trainer
            will be available here.
        gradient_clip_algorithm: The gradient clipping algorithm to use. By default value
            passed in Trainer will be available here.

    Example::

        # Perform gradient clipping on gradients associated with discriminator (optimizer_idx=1) in GAN
        def configure_gradient_clipping(self, optimizer, optimizer_idx, gradient_clip_val, gradient_clip_algorithm):
            if optimizer_idx == 1:
                # Lightning will handle the gradient clipping
                self.clip_gradients(
                    optimizer,
                    gradient_clip_val=gradient_clip_val,
                    gradient_clip_algorithm=gradient_clip_algorithm
                )
            else:
                # implement your own custom logic to clip gradients for generator (optimizer_idx=0)
    """
    self.clip_gradients(
        optimizer, gradient_clip_val=gradient_clip_val, gradient_clip_algorithm=gradient_clip_algorithm
    )
configure_optimizers(self) inherited

Setup the Adam optimizer. Note, that this function also can return a lr scheduler, which is usually useful for training video models.

Source code in zamba/models/efficientnet_models.py
def configure_optimizers(self):
    """
    Setup the Adam optimizer. Note, that this function also can return a lr scheduler, which is
    usually useful for training video models.
    """
    optim = self._get_optimizer()

    if self.scheduler is None:
        return optim
    else:
        return {
            "optimizer": optim,
            "lr_scheduler": self.scheduler(
                optim, **({} if self.scheduler_params is None else self.scheduler_params)
            ),
        }
configure_sharded_model(self) -> None inherited

Hook to create modules in a distributed aware context. This is useful for when using sharded plugins, where we'd like to shard the model instantly, which is useful for extremely large models which can save memory and initialization time.

This hook is called during each of fit/val/test/predict stages in the same process, so ensure that implementation of this hook is idempotent.

Source code in zamba/models/efficientnet_models.py
def configure_sharded_model(self) -> None:
    """Hook to create modules in a distributed aware context. This is useful for when using sharded plugins,
    where we'd like to shard the model instantly, which is useful for extremely large models which can save
    memory and initialization time.

    This hook is called during each of fit/val/test/predict stages in the same process, so ensure that
    implementation of this hook is idempotent.
    """
cpu(self) -> DeviceDtypeModuleMixin inherited

Moves all model parameters and buffers to the CPU.

Returns:

Type Description
Module

self

Source code in zamba/models/efficientnet_models.py
def cpu(self) -> "DeviceDtypeModuleMixin":
    """Moves all model parameters and buffers to the CPU.

    Returns:
        Module: self
    """
    self.__update_properties(device=torch.device("cpu"))
    return super().cpu()
cuda(self, device: Union[torch.device, int] = None) -> DeviceDtypeModuleMixin inherited

Moves all model parameters and buffers to the GPU. This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.

Parameters:

Name Type Description Default
device Union[torch.device, int]

if specified, all parameters will be copied to that device

None

Returns:

Type Description
Module

self

Source code in zamba/models/efficientnet_models.py
def cuda(self, device: Optional[Union[torch.device, int]] = None) -> "DeviceDtypeModuleMixin":
    """Moves all model parameters and buffers to the GPU. This also makes associated parameters and buffers
    different objects. So it should be called before constructing optimizer if the module will live on GPU
    while being optimized.

    Arguments:
        device: if specified, all parameters will be
            copied to that device

    Returns:
        Module: self
    """
    if device is None or isinstance(device, int):
        device = torch.device("cuda", index=device)
    self.__update_properties(device=device)
    return super().cuda(device=device)
double(self) -> DeviceDtypeModuleMixin inherited

Casts all floating point parameters and buffers to double datatype.

Returns:

Type Description
Module

self

Source code in zamba/models/efficientnet_models.py
def double(self) -> "DeviceDtypeModuleMixin":
    """Casts all floating point parameters and buffers to ``double`` datatype.

    Returns:
        Module: self
    """
    self.__update_properties(dtype=torch.double)
    return super().double()
eval(self: ~T) -> ~T inherited

Sets the module in evaluation mode.

This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. :class:Dropout, :class:BatchNorm, etc.

This is equivalent with :meth:self.train(False) <torch.nn.Module.train>.

See :ref:locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.

Returns:

Type Description
Module

self

Source code in zamba/models/efficientnet_models.py
def eval(self: T) -> T:
    r"""Sets the module in evaluation mode.

    This has any effect only on certain modules. See documentations of
    particular modules for details of their behaviors in training/evaluation
    mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
    etc.

    This is equivalent with :meth:`self.train(False) <torch.nn.Module.train>`.

    See :ref:`locally-disable-grad-doc` for a comparison between
    `.eval()` and several similar mechanisms that may be confused with it.

    Returns:
        Module: self
    """
    return self.train(False)
extra_repr(self) -> str inherited

Set the extra representation of the module

To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.

Source code in zamba/models/efficientnet_models.py
def extra_repr(self) -> str:
    r"""Set the extra representation of the module

    To print customized extra information, you should re-implement
    this method in your own modules. Both single-line and multi-line
    strings are acceptable.
    """
    return ''
float(self) -> DeviceDtypeModuleMixin inherited

Casts all floating point parameters and buffers to float datatype.

Returns:

Type Description
Module

self

Source code in zamba/models/efficientnet_models.py
def float(self) -> "DeviceDtypeModuleMixin":
    """Casts all floating point parameters and buffers to ``float`` datatype.

    Returns:
        Module: self
    """
    self.__update_properties(dtype=torch.float)
    return super().float()
forward(self, x)

Same as :meth:torch.nn.Module.forward().

Parameters:

Name Type Description Default
*args

Whatever you decide to pass into the forward method.

required
**kwargs

Keyword arguments are also possible.

required

Returns:

Type Description

Your model's output

Source code in zamba/models/efficientnet_models.py
def forward(self, x):
    self.base.eval()
    x = self.base(x)
    return self.classifier(x)
freeze(self) -> None inherited

Freeze all params for inference.

Example::

model = MyLightningModule(...)
model.freeze()
Source code in zamba/models/efficientnet_models.py
def freeze(self) -> None:
    r"""
    Freeze all params for inference.

    Example::

        model = MyLightningModule(...)
        model.freeze()

    """
    for param in self.parameters():
        param.requires_grad = False

    self.eval()
get_buffer(self, target: str) -> Tensor inherited

Returns the buffer given by target if it exists, otherwise throws an error.

See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.

Parameters:

Name Type Description Default
target str

The fully-qualified string name of the buffer to look for. (See get_submodule for how to specify a fully-qualified string.)

required

Returns:

Type Description
torch.Tensor

The buffer referenced by target

Exceptions:

Type Description
AttributeError

If the target string references an invalid path or resolves to something that is not a buffer

Source code in zamba/models/efficientnet_models.py
def get_buffer(self, target: str) -> "Tensor":
    """
    Returns the buffer given by ``target`` if it exists,
    otherwise throws an error.

    See the docstring for ``get_submodule`` for a more detailed
    explanation of this method's functionality as well as how to
    correctly specify ``target``.

    Args:
        target: The fully-qualified string name of the buffer
            to look for. (See ``get_submodule`` for how to specify a
            fully-qualified string.)

    Returns:
        torch.Tensor: The buffer referenced by ``target``

    Raises:
        AttributeError: If the target string references an invalid
            path or resolves to something that is not a
            buffer
    """
    module_path, _, buffer_name = target.rpartition(".")

    mod: torch.nn.Module = self.get_submodule(module_path)

    if not hasattr(mod, buffer_name):
        raise AttributeError(mod._get_name() + " has no attribute `"
                             + buffer_name + "`")

    buffer: torch.Tensor = getattr(mod, buffer_name)

    if buffer_name not in mod._buffers:
        raise AttributeError("`" + buffer_name + "` is not a buffer")

    return buffer
get_extra_state(self) -> Any inherited

Returns any extra state to include in the module's state_dict. Implement this and a corresponding :func:set_extra_state for your module if you need to store extra state. This function is called when building the module's state_dict().

Note that extra state should be pickleable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.

Returns:

Type Description
object

Any extra state to store in the module's state_dict

Source code in zamba/models/efficientnet_models.py
def get_extra_state(self) -> Any:
    """
    Returns any extra state to include in the module's state_dict.
    Implement this and a corresponding :func:`set_extra_state` for your module
    if you need to store extra state. This function is called when building the
    module's `state_dict()`.

    Note that extra state should be pickleable to ensure working serialization
    of the state_dict. We only provide provide backwards compatibility guarantees
    for serializing Tensors; other objects may break backwards compatibility if
    their serialized pickled form changes.

    Returns:
        object: Any extra state to store in the module's state_dict
    """
    raise RuntimeError(
        "Reached a code path in Module.get_extra_state() that should never be called. "
        "Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.md "
        "to report this bug.")
get_from_queue(self, queue: <bound method BaseContext.SimpleQueue of <multiprocessing.context.DefaultContext object at 0x7f0704b2dfa0>>) -> None inherited

Retrieve the :attr:trainer.callback_metrics dictionary from the given queue. To preserve consistency, we cast back the data to torch.Tensor.

Parameters:

Name Type Description Default
queue <bound method BaseContext.SimpleQueue of <multiprocessing.context.DefaultContext object at 0x7f0704b2dfa0>>

the instance of the queue from where to get the data.

required

.. deprecated:: v1.5 This method was deprecated in v1.5 in favor of DDPSpawnPlugin.get_from_queue and will be removed in v1.7.

Source code in zamba/models/efficientnet_models.py
def get_from_queue(self, queue: torch.multiprocessing.SimpleQueue) -> None:
    """Retrieve the :attr:`trainer.callback_metrics` dictionary from the given queue. To preserve consistency,
    we cast back the data to ``torch.Tensor``.

    Args:
        queue: the instance of the queue from where to get the data.

    .. deprecated:: v1.5
        This method was deprecated in v1.5 in favor of `DDPSpawnPlugin.get_from_queue`
        and will be removed in v1.7.
    """
    if self.trainer and isinstance(self.trainer.training_type_plugin, pl.plugins.training_type.DDPSpawnPlugin):
        self.trainer.training_type_plugin.get_from_queue(self.trainer, queue)
get_parameter(self, target: str) -> Parameter inherited

Returns the parameter given by target if it exists, otherwise throws an error.

See the docstring for get_submodule for a more detailed explanation of this method's functionality as well as how to correctly specify target.

Parameters:

Name Type Description Default
target str

The fully-qualified string name of the Parameter to look for. (See get_submodule for how to specify a fully-qualified string.)

required

Returns:

Type Description
torch.nn.Parameter

The Parameter referenced by target

Exceptions:

Type Description
AttributeError

If the target string references an invalid path or resolves to something that is not an nn.Parameter

Source code in zamba/models/efficientnet_models.py
def get_parameter(self, target: str) -> "Parameter":
    """
    Returns the parameter given by ``target`` if it exists,
    otherwise throws an error.

    See the docstring for ``get_submodule`` for a more detailed
    explanation of this method's functionality as well as how to
    correctly specify ``target``.

    Args:
        target: The fully-qualified string name of the Parameter
            to look for. (See ``get_submodule`` for how to specify a
            fully-qualified string.)

    Returns:
        torch.nn.Parameter: The Parameter referenced by ``target``

    Raises:
        AttributeError: If the target string references an invalid
            path or resolves to something that is not an
            ``nn.Parameter``
    """
    module_path, _, param_name = target.rpartition(".")

    mod: torch.nn.Module = self.get_submodule(module_path)

    if not hasattr(mod, param_name):
        raise AttributeError(mod._get_name() + " has no attribute `"
                             + param_name + "`")

    param: torch.nn.Parameter = getattr(mod, param_name)

    if not isinstance(param, torch.nn.Parameter):
        raise AttributeError("`" + param_name + "` is not an "
                             "nn.Parameter")

    return param
get_progress_bar_dict(self) -> Dict[str, Union[str, int]] inherited

.. deprecated:: v1.5 This method was deprecated in v1.5 in favor of pytorch_lightning.callbacks.progress.base.get_metrics and will be removed in v1.7.

Implement this to override the default items displayed in the progress bar. By default it includes the average loss value, split index of BPTT (if used) and the version of the experiment when using a logger.

.. code-block::

Epoch 1:   4%|â–Ž         | 40/1095 [00:03<01:37, 10.84it/s, loss=4.501, v_num=10]

Here is an example how to override the defaults:

.. code-block:: python

def get_progress_bar_dict(self):
    # don't show the version number
    items = super().get_progress_bar_dict()
    items.pop("v_num", None)
    return items

Returns:

Type Description
Dict[str, Union[str, int]]

Dictionary with the items to be displayed in the progress bar.

Source code in zamba/models/efficientnet_models.py
def get_progress_bar_dict(self) -> Dict[str, Union[int, str]]:
    r"""
    .. deprecated:: v1.5
        This method was deprecated in v1.5 in favor of
        `pytorch_lightning.callbacks.progress.base.get_metrics` and will be removed in v1.7.

    Implement this to override the default items displayed in the progress bar.
    By default it includes the average loss value, split index of BPTT (if used)
    and the version of the experiment when using a logger.

    .. code-block::

        Epoch 1:   4%|â–Ž         | 40/1095 [00:03<01:37, 10.84it/s, loss=4.501, v_num=10]

    Here is an example how to override the defaults:

    .. code-block:: python

        def get_progress_bar_dict(self):
            # don't show the version number
            items = super().get_progress_bar_dict()
            items.pop("v_num", None)
            return items

    Return:
        Dictionary with the items to be displayed in the progress bar.
    """
    return progress_base.get_standard_metrics(self.trainer, self)
get_submodule(self, target: str) -> Module inherited

Returns the submodule given by target if it exists, otherwise throws an error.

For example, let's say you have an nn.Module A that looks like this:

.. code-block::text

A(
    (net_b): Module(
        (net_c): Module(
            (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))
        )
        (linear): Linear(in_features=100, out_features=200, bias=True)
    )
)

(The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)

To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").

The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.

Parameters:

Name Type Description Default
target str

The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)

required

Returns:

Type Description
torch.nn.Module

The submodule referenced by target

Exceptions:

Type Description
AttributeError

If the target string references an invalid path or resolves to something that is not an nn.Module

Source code in zamba/models/efficientnet_models.py
def get_submodule(self, target: str) -> "Module":
    """
    Returns the submodule given by ``target`` if it exists,
    otherwise throws an error.

    For example, let's say you have an ``nn.Module`` ``A`` that
    looks like this:

    .. code-block::text

        A(
            (net_b): Module(
                (net_c): Module(
                    (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))
                )
                (linear): Linear(in_features=100, out_features=200, bias=True)
            )
        )

    (The diagram shows an ``nn.Module`` ``A``. ``A`` has a nested
    submodule ``net_b``, which itself has two submodules ``net_c``
    and ``linear``. ``net_c`` then has a submodule ``conv``.)

    To check whether or not we have the ``linear`` submodule, we
    would call ``get_submodule("net_b.linear")``. To check whether
    we have the ``conv`` submodule, we would call
    ``get_submodule("net_b.net_c.conv")``.

    The runtime of ``get_submodule`` is bounded by the degree
    of module nesting in ``target``. A query against
    ``named_modules`` achieves the same result, but it is O(N) in
    the number of transitive modules. So, for a simple check to see
    if some submodule exists, ``get_submodule`` should always be
    used.

    Args:
        target: The fully-qualified string name of the submodule
            to look for. (See above example for how to specify a
            fully-qualified string.)

    Returns:
        torch.nn.Module: The submodule referenced by ``target``

    Raises:
        AttributeError: If the target string references an invalid
            path or resolves to something that is not an
            ``nn.Module``
    """
    if target == "":
        return self

    atoms: List[str] = target.split(".")
    mod: torch.nn.Module = self

    for item in atoms:

        if not hasattr(mod, item):
            raise AttributeError(mod._get_name() + " has no "
                                 "attribute `" + item + "`")

        mod = getattr(mod, item)

        if not isinstance(mod, torch.nn.Module):
            raise AttributeError("`" + item + "` is not "
                                 "an nn.Module")

    return mod
half(self) -> DeviceDtypeModuleMixin inherited

Casts all floating point parameters and buffers to half datatype.

Returns:

Type Description
Module

self

Source code in zamba/models/efficientnet_models.py
def half(self) -> "DeviceDtypeModuleMixin":
    """Casts all floating point parameters and buffers to ``half`` datatype.

    Returns:
        Module: self
    """
    self.__update_properties(dtype=torch.half)
    return super().half()
load_state_dict(self, state_dict: OrderedDict[str, Tensor], strict: bool = True) inherited

Copies parameters and buffers from :attr:state_dict into this module and its descendants. If :attr:strict is True, then the keys of :attr:state_dict must exactly match the keys returned by this module's :meth:~torch.nn.Module.state_dict function.

Parameters:

Name Type Description Default
state_dict dict

a dict containing parameters and persistent buffers.

required
strict bool

whether to strictly enforce that the keys in :attr:state_dict match the keys returned by this module's :meth:~torch.nn.Module.state_dict function. Default: True

True

Returns:

Type Description
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields
  • missing_keys is a list of str containing the missing keys
    • unexpected_keys is a list of str containing the unexpected keys

!!! note If a parameter or buffer is registered as None and its corresponding key exists in :attr:state_dict, :meth:load_state_dict will raise a RuntimeError.

Source code in zamba/models/efficientnet_models.py
def load_state_dict(self, state_dict: 'OrderedDict[str, Tensor]',
                    strict: bool = True):
    r"""Copies parameters and buffers from :attr:`state_dict` into
    this module and its descendants. If :attr:`strict` is ``True``, then
    the keys of :attr:`state_dict` must exactly match the keys returned
    by this module's :meth:`~torch.nn.Module.state_dict` function.

    Args:
        state_dict (dict): a dict containing parameters and
            persistent buffers.
        strict (bool, optional): whether to strictly enforce that the keys
            in :attr:`state_dict` match the keys returned by this module's
            :meth:`~torch.nn.Module.state_dict` function. Default: ``True``

    Returns:
        ``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
            * **missing_keys** is a list of str containing the missing keys
            * **unexpected_keys** is a list of str containing the unexpected keys

    Note:
        If a parameter or buffer is registered as ``None`` and its corresponding key
        exists in :attr:`state_dict`, :meth:`load_state_dict` will raise a
        ``RuntimeError``.
    """
    missing_keys: List[str] = []
    unexpected_keys: List[str] = []
    error_msgs: List[str] = []

    # copy state_dict so _load_from_state_dict can modify it
    metadata = getattr(state_dict, '_metadata', None)
    state_dict = state_dict.copy()
    if metadata is not None:
        # mypy isn't aware that "_metadata" exists in state_dict
        state_dict._metadata = metadata  # type: ignore[attr-defined]

    def load(module, prefix=''):
        local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
        module._load_from_state_dict(
            state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + '.')

    load(self)
    del load

    if strict:
        if len(unexpected_keys) > 0:
            error_msgs.insert(
                0, 'Unexpected key(s) in state_dict: {}. '.format(
                    ', '.join('"{}"'.format(k) for k in unexpected_keys)))
        if len(missing_keys) > 0:
            error_msgs.insert(
                0, 'Missing key(s) in state_dict: {}. '.format(
                    ', '.join('"{}"'.format(k) for k in missing_keys)))

    if len(error_msgs) > 0:
        raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
                           self.__class__.__name__, "\n\t".join(error_msgs)))
    return _IncompatibleKeys(missing_keys, unexpected_keys)
log(self, name: str, value: Union[torchmetrics.metric.Metric, torch.Tensor, int, float, Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float]]], prog_bar: bool = False, logger: bool = True, on_step: Optional[bool] = None, on_epoch: Optional[bool] = None, reduce_fx: Union[str, Callable] = 'default', tbptt_reduce_fx: Optional = None, tbptt_pad_token: Optional = None, enable_graph: bool = False, sync_dist: bool = False, sync_dist_op: Optional = None, sync_dist_group: Optional[Any] = None, add_dataloader_idx: bool = True, batch_size: Optional[int] = None, metric_attribute: Optional[str] = None, rank_zero_only: Optional[bool] = None) -> None inherited

Log a key, value pair.

Example::

self.log('train_loss', loss)

The default behavior per hook is as follows:

.. csv-table:: * also applies to the test loop :header: "LightningModule Hook", "on_step", "on_epoch", "prog_bar", "logger" :widths: 20, 10, 10, 10, 10

"training_step", "T", "F", "F", "T" "training_step_end", "T", "F", "F", "T" "training_epoch_end", "F", "T", "F", "T" "validation_step", "F", "T", "F", "T" "validation_step_end", "F", "T", "F", "T" "validation_epoch_end*", "F", "T", "F", "T"

Parameters:

Name Type Description Default
name str

key to log

required
value Union[torchmetrics.metric.Metric, torch.Tensor, int, float, Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float]]]

value to log. Can be a float, Tensor, Metric, or a dictionary of the former.

required
prog_bar bool

if True logs to the progress bar

False
logger bool

if True logs to the logger

True
on_step Optional[bool]

if True logs at this step. None auto-logs at the training_step but not validation/test_step

None
on_epoch Optional[bool]

if True logs epoch accumulated metrics. None auto-logs at the val/test step but not training_step

None
reduce_fx Union[str, Callable]

reduction function over step values for end of epoch. :meth:torch.mean by default.

'default'
enable_graph bool

if True, will not auto detach the graph

False
sync_dist bool

if True, reduces the metric across GPUs/TPUs. Use with care as this may lead to a significant communication overhead.

False
sync_dist_group Optional[Any]

the ddp group to sync across

None
add_dataloader_idx bool

if True, appends the index of the current dataloader to the name (when using multiple). If False, user needs to give unique names for each dataloader to not mix values

True
batch_size Optional[int]

Current batch_size. This will be directly inferred from the loaded batch, but some data structures might need to explicitly provide it.

None
metric_attribute Optional[str]

To restore the metric state, Lightning requires the reference of the :class:torchmetrics.Metric in your model. This is found automatically if it is a model attribute.

None
rank_zero_only Optional[bool]

Whether the value will be logged only on rank 0. This will prevent synchronization which would produce a deadlock as not all processes would perform this log call.

None
Source code in zamba/models/efficientnet_models.py
def log(
    self,
    name: str,
    value: _METRIC_COLLECTION,
    prog_bar: bool = False,
    logger: bool = True,
    on_step: Optional[bool] = None,
    on_epoch: Optional[bool] = None,
    reduce_fx: Union[str, Callable] = "default",  # TODO: change to 'mean' when `sync_dist_op` is removed in 1.6
    tbptt_reduce_fx: Optional = None,  # todo: Remove in 1.6
    tbptt_pad_token: Optional = None,  # todo: Remove in 1.6
    enable_graph: bool = False,
    sync_dist: bool = False,
    sync_dist_op: Optional = None,  # todo: Remove in 1.6
    sync_dist_group: Optional[Any] = None,
    add_dataloader_idx: bool = True,
    batch_size: Optional[int] = None,
    metric_attribute: Optional[str] = None,
    rank_zero_only: Optional[bool] = None,
) -> None:
    """Log a key, value pair.

    Example::

        self.log('train_loss', loss)

    The default behavior per hook is as follows:

    .. csv-table:: ``*`` also applies to the test loop
       :header: "LightningModule Hook", "on_step", "on_epoch", "prog_bar", "logger"
       :widths: 20, 10, 10, 10, 10

       "training_step", "T", "F", "F", "T"
       "training_step_end", "T", "F", "F", "T"
       "training_epoch_end", "F", "T", "F", "T"
       "validation_step*", "F", "T", "F", "T"
       "validation_step_end*", "F", "T", "F", "T"
       "validation_epoch_end*", "F", "T", "F", "T"

    Args:
        name: key to log
        value: value to log. Can be a ``float``, ``Tensor``, ``Metric``, or a dictionary of the former.
        prog_bar: if True logs to the progress bar
        logger: if True logs to the logger
        on_step: if True logs at this step. None auto-logs at the training_step but not validation/test_step
        on_epoch: if True logs epoch accumulated metrics. None auto-logs at the val/test step but not training_step
        reduce_fx: reduction function over step values for end of epoch. :meth:`torch.mean` by default.
        enable_graph: if True, will not auto detach the graph
        sync_dist: if True, reduces the metric across GPUs/TPUs. Use with care as this may lead to a significant
            communication overhead.
        sync_dist_group: the ddp group to sync across
        add_dataloader_idx: if True, appends the index of the current dataloader to
            the name (when using multiple). If False, user needs to give unique names for
            each dataloader to not mix values
        batch_size: Current batch_size. This will be directly inferred from the loaded batch,
            but some data structures might need to explicitly provide it.
        metric_attribute: To restore the metric state, Lightning requires the reference of the
            :class:`torchmetrics.Metric` in your model. This is found automatically if it is a model attribute.
        rank_zero_only: Whether the value will be logged only on rank 0. This will prevent synchronization which
            would produce a deadlock as not all processes would perform this log call.
    """
    if tbptt_reduce_fx is not None:
        rank_zero_deprecation(
            "`self.log(tbptt_reduce_fx=...)` is no longer supported. The flag will be removed in v1.6."
            " Please, open a discussion explaining your use-case in"
            " `https://github.com/PyTorchLightning/pytorch-lightning/discussions`"
        )
    if tbptt_pad_token is not None:
        rank_zero_deprecation(
            "`self.log(tbptt_pad_token=...)` is no longer supported. The flag will be removed in v1.6."
            " Please, open a discussion explaining your use-case in"
            " `https://github.com/PyTorchLightning/pytorch-lightning/discussions`"
        )
    if sync_dist_op is not None:
        rank_zero_deprecation(
            f"`self.log(sync_dist_op='{sync_dist_op}')` is deprecated and will be removed in v.1.6."
            f" Use `self.log(reduce_fx={sync_dist_op})` instead."
        )
        if reduce_fx == "default":
            reduce_fx = sync_dist_op
    elif reduce_fx == "default":
        reduce_fx = "mean"

    # check for invalid values
    apply_to_collection(value, dict, self.__check_not_nested, name)
    apply_to_collection(
        value, object, self.__check_allowed, name, value, wrong_dtype=(numbers.Number, Metric, Tensor, dict)
    )

    if self.trainer is None:
        # not an error to support testing the `*_step` methods without a `Trainer` reference
        rank_zero_warn(
            "You are trying to `self.log()` but the `self.trainer` reference is not registered on the model yet."
            " This is most likely because the model hasn't been passed to the `Trainer`"
        )
        return
    results = self.trainer._results
    if results is None:
        raise MisconfigurationException(
            "You are trying to `self.log()` but the loop `ResultCollection` is not registered"
            " yet. This is most likely because you are trying to log in a `predict` hook,"
            " but it doesn't support logging"
        )
    if self._current_fx_name is None:
        raise MisconfigurationException(
            "You are trying to `self.log()` but it is not managed by the `Trainer` control flow"
        )

    on_step, on_epoch = _FxValidator.check_logging_and_get_default_levels(
        self._current_fx_name, on_step=on_step, on_epoch=on_epoch
    )

    # make sure user doesn't introduce logic for multi-dataloaders
    if "/dataloader_idx_" in name:
        raise MisconfigurationException(
            f"You called `self.log` with the key `{name}`"
            " but it should not contain information about `dataloader_idx`"
        )

    value = apply_to_collection(value, numbers.Number, self.__to_tensor)

    if self.trainer.logger_connector.should_reset_tensors(self._current_fx_name):
        # if we started a new epoch (running it's first batch) the hook name has changed
        # reset any tensors for the new hook name
        results.reset(metrics=False, fx=self._current_fx_name)

    if metric_attribute is None and isinstance(value, Metric):
        if self._metric_attributes is None:
            # compute once
            self._metric_attributes = {
                id(module): name for name, module in self.named_modules() if isinstance(module, Metric)
            }
            if not self._metric_attributes:
                raise MisconfigurationException(
                    "Could not find the `LightningModule` attribute for the `torchmetrics.Metric` logged."
                    " You can fix this by setting an attribute for the metric in your `LightningModule`."
                )
        # try to find the passed metric in the LightningModule
        metric_attribute = self._metric_attributes.get(id(value), None)
        if metric_attribute is None:
            raise MisconfigurationException(
                "Could not find the `LightningModule` attribute for the `torchmetrics.Metric` logged."
                f" You can fix this by calling `self.log({name}, ..., metric_attribute=name)` where `name` is one"
                f" of {list(self._metric_attributes.values())}"
            )

    if (
        self.trainer.training
        and is_param_in_hook_signature(self.training_step, "dataloader_iter", explicit=True)
        and batch_size is None
    ):
        raise MisconfigurationException(
            "With `def training_step(self, dataloader_iter)`, `self.log(..., batch_size=...)` should be provided."
        )

    results.log(
        self._current_fx_name,
        name,
        value,
        prog_bar=prog_bar,
        logger=logger,
        on_step=on_step,
        on_epoch=on_epoch,
        reduce_fx=reduce_fx,
        enable_graph=enable_graph,
        add_dataloader_idx=add_dataloader_idx,
        dataloader_idx=self._current_dataloader_idx,
        batch_size=batch_size,
        sync_dist=sync_dist and distributed_available(),
        sync_dist_fn=self.trainer.training_type_plugin.reduce or sync_ddp,
        sync_dist_group=sync_dist_group,
        metric_attribute=metric_attribute,
        rank_zero_only=rank_zero_only,
    )

    self.trainer.logger_connector._current_fx = self._current_fx_name
log_dict(self, dictionary: Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float, Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float]]]], prog_bar: bool = False, logger: bool = True, on_step: Optional[bool] = None, on_epoch: Optional[bool] = None, reduce_fx: Union[str, Callable] = 'default', tbptt_reduce_fx: Optional[Any] = None, tbptt_pad_token: Optional[Any] = None, enable_graph: bool = False, sync_dist: bool = False, sync_dist_op: Optional[Any] = None, sync_dist_group: Optional[Any] = None, add_dataloader_idx: bool = True, batch_size: Optional[int] = None, rank_zero_only: Optional[bool] = None) -> None inherited

Log a dictionary of values at once.

Example::

values = {'loss': loss, 'acc': acc, ..., 'metric_n': metric_n}
self.log_dict(values)

Parameters:

Name Type Description Default
dictionary Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float, Mapping[str, Union[torchmetrics.metric.Metric, torch.Tensor, int, float]]]]

key value pairs. The values can be a float, Tensor, Metric, or a dictionary of the former.

required
prog_bar bool

if True logs to the progress base

False
logger bool

if True logs to the logger

True
on_step Optional[bool]

if True logs at this step. None auto-logs for training_step but not validation/test_step

None
on_epoch Optional[bool]

if True logs epoch accumulated metrics. None auto-logs for val/test step but not training_step

None
reduce_fx Union[str, Callable]

reduction function over step values for end of epoch. :meth:torch.mean by default.

'default'
enable_graph bool

if True, will not auto detach the graph

False
sync_dist bool

if True, reduces the metric across GPUs/TPUs. Use with care as this may lead to a significant communication overhead.

False
sync_dist_group Optional[Any]

the ddp group sync across

None
add_dataloader_idx bool

if True, appends the index of the current dataloader to the name (when using multiple). If False, user needs to give unique names for each dataloader to not mix values

True
batch_size Optional[int]

Current batch_size. This will be directly inferred from the loaded batch, but some data structures might need to explicitly provide it.

None
rank_zero_only Optional[bool]

Whether the value will be logged only on rank 0. This will prevent synchronization which would produce a deadlock as not all processes would perform this log call.

None
Source code in zamba/models/efficientnet_models.py
def log_dict(
    self,
    dictionary: Mapping[str, _METRIC_COLLECTION],
    prog_bar: bool = False,
    logger: bool = True,
    on_step: Optional[bool] = None,
    on_epoch: Optional[bool] = None,
    reduce_fx: Union[str, Callable] = "default",  # TODO: change to 'mean' when `sync_dist_op` is removed in 1.6
    tbptt_reduce_fx: Optional[Any] = None,  # todo: Remove in 1.6
    tbptt_pad_token: Optional[Any] = None,  # todo: Remove in 1.6
    enable_graph: bool = False,
    sync_dist: bool = False,
    sync_dist_op: Optional[Any] = None,  # todo: Remove in 1.6
    sync_dist_group: Optional[Any] = None,
    add_dataloader_idx: bool = True,
    batch_size: Optional[int] = None,
    rank_zero_only: Optional[bool] = None,
) -> None:
    """Log a dictionary of values at once.

    Example::

        values = {'loss': loss, 'acc': acc, ..., 'metric_n': metric_n}
        self.log_dict(values)

    Args:
        dictionary: key value pairs.
            The values can be a ``float``, ``Tensor``, ``Metric``, or a dictionary of the former.
        prog_bar: if True logs to the progress base
        logger: if True logs to the logger
        on_step: if True logs at this step. None auto-logs for training_step but not validation/test_step
        on_epoch: if True logs epoch accumulated metrics. None auto-logs for val/test step but not training_step
        reduce_fx: reduction function over step values for end of epoch. :meth:`torch.mean` by default.
        enable_graph: if True, will not auto detach the graph
        sync_dist: if True, reduces the metric across GPUs/TPUs. Use with care as this may lead to a significant
            communication overhead.
        sync_dist_group: the ddp group sync across
        add_dataloader_idx: if True, appends the index of the current dataloader to
            the name (when using multiple). If False, user needs to give unique names for
            each dataloader to not mix values
        batch_size: Current batch_size. This will be directly inferred from the loaded batch,
            but some data structures might need to explicitly provide it.
        rank_zero_only: Whether the value will be logged only on rank 0. This will prevent synchronization which
            would produce a deadlock as not all processes would perform this log call.
    """
    for k, v in dictionary.items():
        self.log(
            name=k,
            value=v,
            prog_bar=prog_bar,
            logger=logger,
            on_step=on_step,
            on_epoch=on_epoch,
            reduce_fx=reduce_fx,
            enable_graph=enable_graph,
            sync_dist=sync_dist,
            sync_dist_group=sync_dist_group,
            sync_dist_op=sync_dist_op,
            tbptt_pad_token=tbptt_pad_token,
            tbptt_reduce_fx=tbptt_reduce_fx,
            add_dataloader_idx=add_dataloader_idx,
            batch_size=batch_size,
            rank_zero_only=rank_zero_only,
        )
log_grad_norm(self, grad_norm_dict: Dict[str, float]) -> None inherited

Override this method to change the default behaviour of log_grad_norm.

If clipping gradients, the gradients will not have been clipped yet.

Parameters:

Name Type Description Default
grad_norm_dict Dict[str, float]

Dictionary containing current grad norm metrics

required

Example::

# DEFAULT
def log_grad_norm(self, grad_norm_dict):
    self.log_dict(grad_norm_dict, on_step=False, on_epoch=True, prog_bar=False, logger=True)
Source code in zamba/models/efficientnet_models.py
def log_grad_norm(self, grad_norm_dict: Dict[str, float]) -> None:
    """Override this method to change the default behaviour of ``log_grad_norm``.

    If clipping gradients, the gradients will not have been clipped yet.

    Args:
        grad_norm_dict: Dictionary containing current grad norm metrics

    Example::

        # DEFAULT
        def log_grad_norm(self, grad_norm_dict):
            self.log_dict(grad_norm_dict, on_step=False, on_epoch=True, prog_bar=False, logger=True)
    """
    self.log_dict(grad_norm_dict, on_step=True, on_epoch=True, prog_bar=True, logger=True)
lr_schedulers(self) -> Union[Any, List[Any]] inherited

Returns the learning rate scheduler(s) that are being used during training. Useful for manual optimization.

Returns:

Type Description
A single scheduler, or a list of schedulers in case multiple ones are present, or ``None`` if no schedulers were returned in

meth:configure_optimizers.

Source code in zamba/models/efficientnet_models.py
def lr_schedulers(self) -> Optional[Union[Any, List[Any]]]:
    """Returns the learning rate scheduler(s) that are being used during training. Useful for manual
    optimization.

    Returns:
        A single scheduler, or a list of schedulers in case multiple ones are present, or ``None`` if no
        schedulers were returned in :meth:`configure_optimizers`.
    """
    if not self.trainer.lr_schedulers:
        return None

    # ignore other keys "interval", "frequency", etc.
    lr_schedulers = [s["scheduler"] for s in self.trainer.lr_schedulers]

    # single scheduler
    if len(lr_schedulers) == 1:
        return lr_schedulers[0]

    # multiple schedulers
    return lr_schedulers
manual_backward(self, loss: Tensor, *args, **kwargs) -> None inherited

Call this directly from your :meth:training_step when doing optimizations manually. By using this, Lightning can ensure that all the proper scaling gets applied when using mixed precision.

See :ref:manual optimization<common/optimizers:Manual optimization> for more examples.

Example::

def training_step(...):
    opt = self.optimizers()
    loss = ...
    opt.zero_grad()
    # automatically applies scaling, etc...
    self.manual_backward(loss)
    opt.step()

Parameters:

Name Type Description Default
loss Tensor

The tensor on which to compute gradients. Must have a graph attached.

required
*args

Additional positional arguments to be forwarded to :meth:~torch.Tensor.backward

()
**kwargs

Additional keyword arguments to be forwarded to :meth:~torch.Tensor.backward

{}
Source code in zamba/models/efficientnet_models.py
def manual_backward(self, loss: Tensor, *args, **kwargs) -> None:
    """Call this directly from your :meth:`training_step` when doing optimizations manually. By using this,
    Lightning can ensure that all the proper scaling gets applied when using mixed precision.

    See :ref:`manual optimization<common/optimizers:Manual optimization>` for more examples.

    Example::

        def training_step(...):
            opt = self.optimizers()
            loss = ...
            opt.zero_grad()
            # automatically applies scaling, etc...
            self.manual_backward(loss)
            opt.step()

    Args:
        loss: The tensor on which to compute gradients. Must have a graph attached.
        *args: Additional positional arguments to be forwarded to :meth:`~torch.Tensor.backward`
        **kwargs: Additional keyword arguments to be forwarded to :meth:`~torch.Tensor.backward`
    """
    self._verify_is_manual_optimization("manual_backward")
    self.trainer.accelerator.backward(loss, None, None, *args, **kwargs)
modules(self) -> Iterator[Module] inherited

Returns an iterator over all modules in the network.

Yields:

Type Description
Module

a module in the network

!!! note Duplicate modules are returned only once. In the following example, l will be returned only once.

Example::

>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.modules()):
        print(idx, '->', m)

0 -> Sequential(
  (0): Linear(in_features=2, out_features=2, bias=True)
  (1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)
Source code in zamba/models/efficientnet_models.py
def modules(self) -> Iterator['Module']:
    r"""Returns an iterator over all modules in the network.

    Yields:
        Module: a module in the network

    Note:
        Duplicate modules are returned only once. In the following
        example, ``l`` will be returned only once.

    Example::

        >>> l = nn.Linear(2, 2)
        >>> net = nn.Sequential(l, l)
        >>> for idx, m in enumerate(net.modules()):
                print(idx, '->', m)

        0 -> Sequential(
          (0): Linear(in_features=2, out_features=2, bias=True)
          (1): Linear(in_features=2, out_features=2, bias=True)
        )
        1 -> Linear(in_features=2, out_features=2, bias=True)

    """
    for _, module in self.named_modules():
        yield module
named_buffers(self, prefix: str = '', recurse: bool = True) -> Iterator[Tuple[str, torch.Tensor]] inherited

Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

Parameters:

Name Type Description Default
prefix str

prefix to prepend to all buffer names.

''
recurse bool

if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.

True

Yields:

Type Description
(string, torch.Tensor)

Tuple containing the name and buffer

Example::

>>> for name, buf in self.named_buffers():
>>>    if name in ['running_var']:
>>>        print(buf.size())
Source code in zamba/models/efficientnet_models.py
def named_buffers(self, prefix: str = '', recurse: bool = True) -> Iterator[Tuple[str, Tensor]]:
    r"""Returns an iterator over module buffers, yielding both the
    name of the buffer as well as the buffer itself.

    Args:
        prefix (str): prefix to prepend to all buffer names.
        recurse (bool): if True, then yields buffers of this module
            and all submodules. Otherwise, yields only buffers that
            are direct members of this module.

    Yields:
        (string, torch.Tensor): Tuple containing the name and buffer

    Example::

        >>> for name, buf in self.named_buffers():
        >>>    if name in ['running_var']:
        >>>        print(buf.size())

    """
    gen = self._named_members(
        lambda module: module._buffers.items(),
        prefix=prefix, recurse=recurse)
    for elem in gen:
        yield elem
named_children(self) -> Iterator[Tuple[str, Module]] inherited

Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

Yields:

Type Description
(string, Module)

Tuple containing a name and child module

Example::

>>> for name, module in model.named_children():
>>>     if name in ['conv4', 'conv5']:
>>>         print(module)
Source code in zamba/models/efficientnet_models.py
def named_children(self) -> Iterator[Tuple[str, 'Module']]:
    r"""Returns an iterator over immediate children modules, yielding both
    the name of the module as well as the module itself.

    Yields:
        (string, Module): Tuple containing a name and child module

    Example::

        >>> for name, module in model.named_children():
        >>>     if name in ['conv4', 'conv5']:
        >>>         print(module)

    """
    memo = set()
    for name, module in self._modules.items():
        if module is not None and module not in memo:
            memo.add(module)
            yield name, module
named_modules(self, memo: Optional[Set[Module]] = None, prefix: str = '', remove_duplicate: bool = True) inherited

Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

Parameters:

Name Type Description Default
memo Optional[Set[Module]]

a memo to store the set of modules already added to the result

None
prefix str

a prefix that will be added to the name of the module

''
remove_duplicate bool

whether to remove the duplicated module instances in the result

True

Yields:

Type Description
(string, Module)

Tuple of name and module

!!! note Duplicate modules are returned only once. In the following example, l will be returned only once.

Example::

>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.named_modules()):
        print(idx, '->', m)

0 -> ('', Sequential(
  (0): Linear(in_features=2, out_features=2, bias=True)
  (1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
Source code in zamba/models/efficientnet_models.py
def named_modules(self, memo: Optional[Set['Module']] = None, prefix: str = '', remove_duplicate: bool = True):
    r"""Returns an iterator over all modules in the network, yielding
    both the name of the module as well as the module itself.

    Args:
        memo: a memo to store the set of modules already added to the result
        prefix: a prefix that will be added to the name of the module
        remove_duplicate: whether to remove the duplicated module instances in the result
        or not

    Yields:
        (string, Module): Tuple of name and module

    Note:
        Duplicate modules are returned only once. In the following
        example, ``l`` will be returned only once.

    Example::

        >>> l = nn.Linear(2, 2)
        >>> net = nn.Sequential(l, l)
        >>> for idx, m in enumerate(net.named_modules()):
                print(idx, '->', m)

        0 -> ('', Sequential(
          (0): Linear(in_features=2, out_features=2, bias=True)
          (1): Linear(in_features=2, out_features=2, bias=True)
        ))
        1 -> ('0', Linear(in_features=2, out_features=2, bias=True))

    """

    if memo is None:
        memo = set()
    if self not in memo:
        if remove_duplicate:
            memo.add(self)
        yield prefix, self
        for name, module in self._modules.items():
            if module is None:
                continue
            submodule_prefix = prefix + ('.' if prefix else '') + name
            for m in module.named_modules(memo, submodule_prefix, remove_duplicate):
                yield m
named_parameters(self, prefix: str = '', recurse: bool = True) -> Iterator[Tuple[str, torch.nn.parameter.Parameter]] inherited

Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

Parameters:

Name Type Description Default
prefix str

prefix to prepend to all parameter names.

''
recurse bool

if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.

True

Yields:

Type Description
(string, Parameter)

Tuple containing the name and parameter

Example::

>>> for name, param in self.named_parameters():
>>>    if name in ['bias']:
>>>        print(param.size())
Source code in zamba/models/efficientnet_models.py
def named_parameters(self, prefix: str = '', recurse: bool = True) -> Iterator[Tuple[str, Parameter]]:
    r"""Returns an iterator over module parameters, yielding both the
    name of the parameter as well as the parameter itself.

    Args:
        prefix (str): prefix to prepend to all parameter names.
        recurse (bool): if True, then yields parameters of this module
            and all submodules. Otherwise, yields only parameters that
            are direct members of this module.

    Yields:
        (string, Parameter): Tuple containing the name and parameter

    Example::

        >>> for name, param in self.named_parameters():
        >>>    if name in ['bias']:
        >>>        print(param.size())

    """
    gen = self._named_members(
        lambda module: module._parameters.items(),
        prefix=prefix, recurse=recurse)
    for elem in gen:
        yield elem
on_after_backward(self) -> None inherited

Called after loss.backward() and before optimizers are stepped.

!!! note If using native AMP, the gradients will not be unscaled at this point. Use the on_before_optimizer_step if you need the unscaled gradients.

Source code in zamba/models/efficientnet_models.py
def on_after_backward(self) -> None:
    """Called after ``loss.backward()`` and before optimizers are stepped.

    Note:
        If using native AMP, the gradients will not be unscaled at this point.
        Use the ``on_before_optimizer_step`` if you need the unscaled gradients.
    """
on_after_batch_transfer(self, batch: Any, dataloader_idx: int) -> Any inherited

Override to alter or apply batch augmentations to your batch after it is transferred to the device.

!!! note To check the current state of execution of this hook you can use self.trainer.training/testing/validating/predicting so that you can add different logic as per your requirement.

!!! note This hook only runs on single GPU training and DDP (no data-parallel). Data-Parallel support will come in near future.

Parameters:

Name Type Description Default
batch Any

A batch of data that needs to be altered or augmented.

required
dataloader_idx int

The index of the dataloader to which the batch belongs.

required

Returns:

Type Description
Any

A batch of data

Example::

def on_after_batch_transfer(self, batch, dataloader_idx):
    batch['x'] = gpu_transforms(batch['x'])
    return batch

See Also: - :meth:on_before_batch_transfer - :meth:transfer_batch_to_device

Source code in zamba/models/efficientnet_models.py
def on_after_batch_transfer(self, batch: Any, dataloader_idx: int) -> Any:
    """Override to alter or apply batch augmentations to your batch after it is transferred to the device.

    Note:
        To check the current state of execution of this hook you can use
        ``self.trainer.training/testing/validating/predicting`` so that you can
        add different logic as per your requirement.

    Note:
        This hook only runs on single GPU training and DDP (no data-parallel).
        Data-Parallel support will come in near future.

    Args:
        batch: A batch of data that needs to be altered or augmented.
        dataloader_idx: The index of the dataloader to which the batch belongs.

    Returns:
        A batch of data

    Example::

        def on_after_batch_transfer(self, batch, dataloader_idx):
            batch['x'] = gpu_transforms(batch['x'])
            return batch

    Raises:
        MisconfigurationException:
            If using data-parallel, ``Trainer(strategy='dp')``.

    See Also:
        - :meth:`on_before_batch_transfer`
        - :meth:`transfer_batch_to_device`
    """
    return batch
on_before_backward(self, loss: Tensor) -> None inherited

Called before loss.backward().

Parameters:

Name Type Description Default
loss Tensor

Loss divided by number of batches for gradient accumulation and scaled if using native AMP.

required
Source code in zamba/models/efficientnet_models.py
def on_before_backward(self, loss: torch.Tensor) -> None:
    """Called before ``loss.backward()``.

    Args:
        loss: Loss divided by number of batches for gradient accumulation and scaled if using native AMP.
    """
    pass
on_before_batch_transfer(self, batch: Any, dataloader_idx: int) -> Any inherited

Override to alter or apply batch augmentations to your batch before it is transferred to the device.

!!! note To check the current state of execution of this hook you can use self.trainer.training/testing/validating/predicting so that you can add different logic as per your requirement.

!!! note This hook only runs on single GPU training and DDP (no data-parallel). Data-Parallel support will come in near future.

Parameters:

Name Type Description Default
batch Any

A batch of data that needs to be altered or augmented.

required
dataloader_idx int

The index of the dataloader to which the batch belongs.

required

Returns:

Type Description
Any

A batch of data

Example::

def on_before_batch_transfer(self, batch, dataloader_idx):
    batch['x'] = transforms(batch['x'])
    return batch

See Also: - :meth:on_after_batch_transfer - :meth:transfer_batch_to_device

Source code in zamba/models/efficientnet_models.py
def on_before_batch_transfer(self, batch: Any, dataloader_idx: int) -> Any:
    """Override to alter or apply batch augmentations to your batch before it is transferred to the device.

    Note:
        To check the current state of execution of this hook you can use
        ``self.trainer.training/testing/validating/predicting`` so that you can
        add different logic as per your requirement.

    Note:
        This hook only runs on single GPU training and DDP (no data-parallel).
        Data-Parallel support will come in near future.

    Args:
        batch: A batch of data that needs to be altered or augmented.
        dataloader_idx: The index of the dataloader to which the batch belongs.

    Returns:
        A batch of data

    Example::

        def on_before_batch_transfer(self, batch, dataloader_idx):
            batch['x'] = transforms(batch['x'])
            return batch

    Raises:
        MisconfigurationException:
            If using data-parallel, ``Trainer(strategy='dp')``.

    See Also:
        - :meth:`on_after_batch_transfer`
        - :meth:`transfer_batch_to_device`
    """
    return batch
on_before_optimizer_step(self, optimizer: Optimizer, optimizer_idx: int) -> None inherited

Called before optimizer.step().

The hook is only called if gradients do not need to be accumulated. See: :paramref:~pytorch_lightning.trainer.Trainer.accumulate_grad_batches.

If using native AMP, the loss will be unscaled before calling this hook. See these docs <https://pytorch.org/docs/stable/notes/amp_examples.html#working-with-unscaled-gradients>__ for more information on the scaling of gradients.

If clipping gradients, the gradients will not have been clipped yet.

Parameters:

Name Type Description Default
optimizer Optimizer

Current optimizer being used.

required
optimizer_idx int

Index of the current optimizer being used.

required

Example::

def on_before_optimizer_step(self, optimizer, optimizer_idx):
    # example to inspect gradient information in tensorboard
    if self.trainer.global_step % 25 == 0:  # don't make the tf file huge
        for k, v in self.named_parameters():
            self.logger.experiment.add_histogram(
                tag=k, values=v.grad, global_step=self.trainer.global_step
            )
Source code in zamba/models/efficientnet_models.py
def on_before_optimizer_step(self, optimizer: Optimizer, optimizer_idx: int) -> None:
    """Called before ``optimizer.step()``.

    The hook is only called if gradients do not need to be accumulated.
    See: :paramref:`~pytorch_lightning.trainer.Trainer.accumulate_grad_batches`.

    If using native AMP, the loss will be unscaled before calling this hook.
    See these `docs <https://pytorch.org/docs/stable/notes/amp_examples.html#working-with-unscaled-gradients>`__
    for more information on the scaling of gradients.

    If clipping gradients, the gradients will not have been clipped yet.

    Args:
        optimizer: Current optimizer being used.
        optimizer_idx: Index of the current optimizer being used.

    Example::

        def on_before_optimizer_step(self, optimizer, optimizer_idx):
            # example to inspect gradient information in tensorboard
            if self.trainer.global_step % 25 == 0:  # don't make the tf file huge
                for k, v in self.named_parameters():
                    self.logger.experiment.add_histogram(
                        tag=k, values=v.grad, global_step=self.trainer.global_step
                    )
    """
on_before_zero_grad(self, optimizer: Optimizer) -> None inherited

Called after training_step() and before optimizer.zero_grad().

Called in the training loop after taking an optimizer step and before zeroing grads. Good place to inspect weight information with weights updated.

This is where it is called::

for optimizer in optimizers:
    out = training_step(...)

    model.on_before_zero_grad(optimizer) # < ---- called here
    optimizer.zero_grad()

    backward()

Parameters:

Name Type Description Default
optimizer Optimizer

The optimizer for which grads should be zeroed.

required
Source code in zamba/models/efficientnet_models.py
def on_before_zero_grad(self, optimizer: Optimizer) -> None:
    """Called after ``training_step()`` and before ``optimizer.zero_grad()``.

    Called in the training loop after taking an optimizer step and before zeroing grads.
    Good place to inspect weight information with weights updated.

    This is where it is called::

        for optimizer in optimizers:
            out = training_step(...)

            model.on_before_zero_grad(optimizer) # < ---- called here
            optimizer.zero_grad()

            backward()

    Args:
        optimizer: The optimizer for which grads should be zeroed.
    """
on_epoch_end(self) -> None inherited

Called when either of train/val/test epoch ends.

Source code in zamba/models/efficientnet_models.py
def on_epoch_end(self) -> None:
    """Called when either of train/val/test epoch ends."""
on_epoch_start(self) -> None inherited

Called when either of train/val/test epoch begins.

Source code in zamba/models/efficientnet_models.py
def on_epoch_start(self) -> None:
    """Called when either of train/val/test epoch begins."""
on_fit_end(self) -> None inherited

Called at the very end of fit.

If on DDP it is called on every process

Source code in zamba/models/efficientnet_models.py
def on_fit_end(self) -> None:
    """Called at the very end of fit.

    If on DDP it is called on every process
    """
on_fit_start(self) -> None inherited

Called at the very beginning of fit.

If on DDP it is called on every process

Source code in zamba/models/efficientnet_models.py
def on_fit_start(self) -> None:
    """Called at the very beginning of fit.

    If on DDP it is called on every process
    """
on_hpc_load(self, checkpoint: Dict[str, Any]) -> None inherited

Hook to do whatever you need right before Slurm manager loads the model.

Parameters:

Name Type Description Default
checkpoint Dict[str, Any]

A dictionary with variables from the checkpoint.

required
Source code in zamba/models/efficientnet_models.py
def on_hpc_load(self, checkpoint: Dict[str, Any]) -> None:
    """Hook to do whatever you need right before Slurm manager loads the model.

    Args:
        checkpoint: A dictionary with variables from the checkpoint.
    """
on_hpc_save(self, checkpoint: Dict[str, Any]) -> None inherited

Hook to do whatever you need right before Slurm manager saves the model.

Parameters:

Name Type Description Default
checkpoint Dict[str, Any]

A dictionary in which you can save variables to save in a checkpoint. Contents need to be pickleable.

required
Source code in zamba/models/efficientnet_models.py
def on_hpc_save(self, checkpoint: Dict[str, Any]) -> None:
    """Hook to do whatever you need right before Slurm manager saves the model.

    Args:
        checkpoint: A dictionary in which you can save variables to save in a checkpoint.
            Contents need to be pickleable.
    """
on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None inherited

Called by Lightning to restore your model. If you saved something with :meth:on_save_checkpoint this is your chance to restore this.

Parameters:

Name Type Description Default
checkpoint Dict[str, Any]

Loaded checkpoint

required

Example::

def on_load_checkpoint(self, checkpoint):
    # 99% of the time you don't need to implement this method
    self.something_cool_i_want_to_save = checkpoint['something_cool_i_want_to_save']

!!! note Lightning auto-restores global step, epoch, and train state including amp scaling. There is no need for you to restore anything regarding training.

Source code in zamba/models/efficientnet_models.py
def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
    r"""
    Called by Lightning to restore your model.
    If you saved something with :meth:`on_save_checkpoint` this is your chance to restore this.

    Args:
        checkpoint: Loaded checkpoint

    Example::

        def on_load_checkpoint(self, checkpoint):
            # 99% of the time you don't need to implement this method
            self.something_cool_i_want_to_save = checkpoint['something_cool_i_want_to_save']

    Note:
        Lightning auto-restores global step, epoch, and train state including amp scaling.
        There is no need for you to restore anything regarding training.
    """
on_post_move_to_device(self) -> None inherited

Called in the parameter_validation decorator after :meth:~pytorch_lightning.core.LightningModule.to is called. This is a good place to tie weights between modules after moving them to a device. Can be used when training models with weight sharing properties on TPU.

Addresses the handling of shared weights on TPU: https://github.com/pytorch/xla/blob/master/TROUBLESHOOTING.md#xla-tensor-quirks

Example::

def on_post_move_to_device(self):
    self.decoder.weight = self.encoder.weight
Source code in zamba/models/efficientnet_models.py
def on_post_move_to_device(self) -> None:
    """Called in the ``parameter_validation`` decorator after
    :meth:`~pytorch_lightning.core.LightningModule.to` is called. This is a good place to tie weights between
    modules after moving them to a device. Can be used when training models with weight sharing properties on
    TPU.

    Addresses the handling of shared weights on TPU:
    https://github.com/pytorch/xla/blob/master/TROUBLESHOOTING.md#xla-tensor-quirks

    Example::

        def on_post_move_to_device(self):
            self.decoder.weight = self.encoder.weight
    """
on_predict_batch_end(self, outputs: Optional[Any], batch: Any, batch_idx: int, dataloader_idx: int) -> None inherited

Called in the predict loop after the batch.

Parameters:

Name Type Description Default
outputs Optional[Any]

The outputs of predict_step_end(test_step(x))

required
batch Any

The batched data as it is returned by the test DataLoader.

required
batch_idx int

the index of the batch

required
dataloader_idx int

the index of the dataloader

required
Source code in zamba/models/efficientnet_models.py
def on_predict_batch_end(self, outputs: Optional[Any], batch: Any, batch_idx: int, dataloader_idx: int) -> None:
    """Called in the predict loop after the batch.

    Args:
        outputs: The outputs of predict_step_end(test_step(x))
        batch: The batched data as it is returned by the test DataLoader.
        batch_idx: the index of the batch
        dataloader_idx: the index of the dataloader
    """
on_predict_batch_start(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None inherited

Called in the predict loop before anything happens for that batch.

Parameters:

Name Type Description Default
batch Any

The batched data as it is returned by the test DataLoader.

required
batch_idx int

the index of the batch

required
dataloader_idx int

the index of the dataloader

required
Source code in zamba/models/efficientnet_models.py
def on_predict_batch_start(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None:
    """Called in the predict loop before anything happens for that batch.

    Args:
        batch: The batched data as it is returned by the test DataLoader.
        batch_idx: the index of the batch
        dataloader_idx: the index of the dataloader
    """
on_predict_dataloader(self) -> None inherited

Called before requesting the predict dataloader.

.. deprecated:: v1.5 :meth:on_predict_dataloader is deprecated and will be removed in v1.7.0. Please use :meth:predict_dataloader() directly.

Source code in zamba/models/efficientnet_models.py
def on_predict_dataloader(self) -> None:
    """Called before requesting the predict dataloader.

    .. deprecated:: v1.5
        :meth:`on_predict_dataloader` is deprecated and will be removed in v1.7.0.
        Please use :meth:`predict_dataloader()` directly.
    """
on_predict_end(self) -> None inherited

Called at the end of predicting.

Source code in zamba/models/efficientnet_models.py
def on_predict_end(self) -> None:
    """Called at the end of predicting."""
on_predict_epoch_end(self, results: List[Any]) -> None inherited

Called at the end of predicting.

Source code in zamba/models/efficientnet_models.py
def on_predict_epoch_end(self, results: List[Any]) -> None:
    """Called at the end of predicting."""
on_predict_epoch_start(self) -> None inherited

Called at the beginning of predicting.

Source code in zamba/models/efficientnet_models.py
def on_predict_epoch_start(self) -> None:
    """Called at the beginning of predicting."""
on_predict_model_eval(self) -> None inherited

Sets the model to eval during the predict loop.

Source code in zamba/models/efficientnet_models.py
def on_predict_model_eval(self) -> None:
    """Sets the model to eval during the predict loop."""
    self.trainer.model.eval()
on_predict_start(self) -> None inherited

Called at the beginning of predicting.

Source code in zamba/models/efficientnet_models.py
def on_predict_start(self) -> None:
    """Called at the beginning of predicting."""
on_pretrain_routine_end(self) -> None inherited

Called at the end of the pretrain routine (between fit and train start).

  • fit
  • pretrain_routine start
  • pretrain_routine end
  • training_start
Source code in zamba/models/efficientnet_models.py
def on_pretrain_routine_end(self) -> None:
    """Called at the end of the pretrain routine (between fit and train start).

    - fit
    - pretrain_routine start
    - pretrain_routine end
    - training_start
    """
on_pretrain_routine_start(self) -> None inherited

Called at the beginning of the pretrain routine (between fit and train start).

  • fit
  • pretrain_routine start
  • pretrain_routine end
  • training_start
Source code in zamba/models/efficientnet_models.py
def on_pretrain_routine_start(self) -> None:
    """Called at the beginning of the pretrain routine (between fit and train start).

    - fit
    - pretrain_routine start
    - pretrain_routine end
    - training_start
    """
on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None inherited

Called by Lightning when saving a checkpoint to give you a chance to store anything else you might want to save.

Parameters:

Name Type Description Default
checkpoint Dict[str, Any]

The full checkpoint dictionary before it gets dumped to a file. Implementations of this hook can insert additional data into this dictionary.

required

Example::

def on_save_checkpoint(self, checkpoint):
    # 99% of use cases you don't need to implement this method
    checkpoint['something_cool_i_want_to_save'] = my_cool_pickable_object

!!! note Lightning saves all aspects of training (epoch, global step, etc...) including amp scaling. There is no need for you to store anything about training.

Source code in zamba/models/efficientnet_models.py
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
    r"""
    Called by Lightning when saving a checkpoint to give you a chance to store anything
    else you might want to save.

    Args:
        checkpoint: The full checkpoint dictionary before it gets dumped to a file.
            Implementations of this hook can insert additional data into this dictionary.

    Example::

        def on_save_checkpoint(self, checkpoint):
            # 99% of use cases you don't need to implement this method
            checkpoint['something_cool_i_want_to_save'] = my_cool_pickable_object

    Note:
        Lightning saves all aspects of training (epoch, global step, etc...)
        including amp scaling.
        There is no need for you to store anything about training.

    """
on_test_batch_end(self, outputs: Union[torch.Tensor, Dict[str, Any]], batch: Any, batch_idx: int, dataloader_idx: int) -> None inherited

Called in the test loop after the batch.

Parameters:

Name Type Description Default
outputs Union[torch.Tensor, Dict[str, Any]]

The outputs of test_step_end(test_step(x))

required
batch Any

The batched data as it is returned by the test DataLoader.

required
batch_idx int

the index of the batch

required
dataloader_idx int

the index of the dataloader

required
Source code in zamba/models/efficientnet_models.py
def on_test_batch_end(
    self, outputs: Optional[STEP_OUTPUT], batch: Any, batch_idx: int, dataloader_idx: int
) -> None:
    """Called in the test loop after the batch.

    Args:
        outputs: The outputs of test_step_end(test_step(x))
        batch: The batched data as it is returned by the test DataLoader.
        batch_idx: the index of the batch
        dataloader_idx: the index of the dataloader
    """
on_test_batch_start(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None inherited

Called in the test loop before anything happens for that batch.

Parameters:

Name Type Description Default
batch Any

The batched data as it is returned by the test DataLoader.

required
batch_idx int

the index of the batch

required
dataloader_idx int

the index of the dataloader

required
Source code in zamba/models/efficientnet_models.py
def on_test_batch_start(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None:
    """Called in the test loop before anything happens for that batch.

    Args:
        batch: The batched data as it is returned by the test DataLoader.
        batch_idx: the index of the batch
        dataloader_idx: the index of the dataloader
    """
on_test_dataloader(self) -> None inherited

Called before requesting the test dataloader.

.. deprecated:: v1.5 :meth:on_test_dataloader is deprecated and will be removed in v1.7.0. Please use :meth:test_dataloader() directly.

Source code in zamba/models/efficientnet_models.py
def on_test_dataloader(self) -> None:
    """Called before requesting the test dataloader.

    .. deprecated:: v1.5
        :meth:`on_test_dataloader` is deprecated and will be removed in v1.7.0.
        Please use :meth:`test_dataloader()` directly.
    """
on_test_end(self) -> None inherited

Called at the end of testing.

Source code in zamba/models/efficientnet_models.py
def on_test_end(self) -> None:
    """Called at the end of testing."""
on_test_epoch_end(self) -> None inherited

Called in the test loop at the very end of the epoch.

Source code in zamba/models/efficientnet_models.py
def on_test_epoch_end(self) -> None:
    """Called in the test loop at the very end of the epoch."""
on_test_epoch_start(self) -> None inherited

Called in the test loop at the very beginning of the epoch.

Source code in zamba/models/efficientnet_models.py
def on_test_epoch_start(self) -> None:
    """Called in the test loop at the very beginning of the epoch."""
on_test_model_eval(self) -> None inherited

Sets the model to eval during the test loop.

Source code in zamba/models/efficientnet_models.py
def on_test_model_eval(self) -> None:
    """Sets the model to eval during the test loop."""
    self.trainer.model.eval()
on_test_model_train(self) -> None inherited

Sets the model to train during the test loop.

Source code in zamba/models/efficientnet_models.py
def on_test_model_train(self) -> None:
    """Sets the model to train during the test loop."""
    self.trainer.model.train()
on_test_start(self) -> None inherited

Called at the beginning of testing.

Source code in zamba/models/efficientnet_models.py
def on_test_start(self) -> None:
    """Called at the beginning of testing."""
on_train_batch_end(self, outputs: Union[torch.Tensor, Dict[str, Any]], batch: Any, batch_idx: int, unused: Optional[int] = 0) -> None inherited

Called in the training loop after the batch.

Parameters:

Name Type Description Default
outputs Union[torch.Tensor, Dict[str, Any]]

The outputs of training_step_end(training_step(x))

required
batch Any

The batched data as it is returned by the training DataLoader.

required
batch_idx int

the index of the batch

required
unused Optional[int]

Deprecated argument. Will be removed in v1.7.

0
Source code in zamba/models/efficientnet_models.py
def on_train_batch_end(self, outputs: STEP_OUTPUT, batch: Any, batch_idx: int, unused: Optional[int] = 0) -> None:
    """Called in the training loop after the batch.

    Args:
        outputs: The outputs of training_step_end(training_step(x))
        batch: The batched data as it is returned by the training DataLoader.
        batch_idx: the index of the batch
        unused: Deprecated argument. Will be removed in v1.7.
    """
on_train_batch_start(self, batch: Any, batch_idx: int, unused: Optional[int] = 0) -> None inherited

Called in the training loop before anything happens for that batch.

If you return -1 here, you will skip training for the rest of the current epoch.

Parameters:

Name Type Description Default
batch Any

The batched data as it is returned by the training DataLoader.

required
batch_idx int

the index of the batch

required
unused Optional[int]

Deprecated argument. Will be removed in v1.7.

0
Source code in zamba/models/efficientnet_models.py
def on_train_batch_start(self, batch: Any, batch_idx: int, unused: Optional[int] = 0) -> None:
    """Called in the training loop before anything happens for that batch.

    If you return -1 here, you will skip training for the rest of the current epoch.

    Args:
        batch: The batched data as it is returned by the training DataLoader.
        batch_idx: the index of the batch
        unused: Deprecated argument. Will be removed in v1.7.
    """
on_train_dataloader(self) -> None inherited

Called before requesting the train dataloader.

.. deprecated:: v1.5 :meth:on_train_dataloader is deprecated and will be removed in v1.7.0. Please use :meth:train_dataloader() directly.

Source code in zamba/models/efficientnet_models.py
def on_train_dataloader(self) -> None:
    """Called before requesting the train dataloader.

    .. deprecated:: v1.5
        :meth:`on_train_dataloader` is deprecated and will be removed in v1.7.0.
        Please use :meth:`train_dataloader()` directly.
    """
on_train_end(self) -> None inherited

Called at the end of training before logger experiment is closed.

Source code in zamba/models/efficientnet_models.py
def on_train_end(self) -> None:
    """Called at the end of training before logger experiment is closed."""
on_train_epoch_end(self) -> None inherited

Called in the training loop at the very end of the epoch.

To access all batch outputs at the end of the epoch, either:

  1. Implement training_epoch_end in the LightningModule OR
  2. Cache data across steps on the attribute(s) of the LightningModule and access them in this hook
Source code in zamba/models/efficientnet_models.py
def on_train_epoch_end(self) -> None:
    """Called in the training loop at the very end of the epoch.

    To access all batch outputs at the end of the epoch, either:

    1. Implement `training_epoch_end` in the LightningModule OR
    2. Cache data across steps on the attribute(s) of the `LightningModule` and access them in this hook
    """
on_train_epoch_start(self) -> None inherited

Called in the training loop at the very beginning of the epoch.

Source code in zamba/models/efficientnet_models.py
def on_train_epoch_start(self) -> None:
    """Called in the training loop at the very beginning of the epoch."""
on_train_start(self) inherited

Called at the beginning of training after sanity check.

Source code in zamba/models/efficientnet_models.py
def on_train_start(self):
    metrics = {"val_macro_f1": {}}

    if self.num_classes > 2:
        metrics.update(
            {f"val_top_{k}_accuracy": {} for k in DEFAULT_TOP_K if k < self.num_classes}
        )
    else:
        metrics.update({"val_accuracy": {}})

    # write hparams to hparams.yaml file, log metrics to tb hparams tab
    self.logger.log_hyperparams(self.hparams, metrics)
on_val_dataloader(self) -> None inherited

Called before requesting the val dataloader.

.. deprecated:: v1.5 :meth:on_val_dataloader is deprecated and will be removed in v1.7.0. Please use :meth:val_dataloader() directly.

Source code in zamba/models/efficientnet_models.py
def on_val_dataloader(self) -> None:
    """Called before requesting the val dataloader.

    .. deprecated:: v1.5
        :meth:`on_val_dataloader` is deprecated and will be removed in v1.7.0.
        Please use :meth:`val_dataloader()` directly.
    """
on_validation_batch_end(self, outputs: Union[torch.Tensor, Dict[str, Any]], batch: Any, batch_idx: int, dataloader_idx: int) -> None inherited

Called in the validation loop after the batch.

Parameters:

Name Type Description Default
outputs Union[torch.Tensor, Dict[str, Any]]

The outputs of validation_step_end(validation_step(x))

required
batch Any

The batched data as it is returned by the validation DataLoader.

required
batch_idx int

the index of the batch

required
dataloader_idx int

the index of the dataloader

required
Source code in zamba/models/efficientnet_models.py
def on_validation_batch_end(
    self, outputs: Optional[STEP_OUTPUT], batch: Any, batch_idx: int, dataloader_idx: int
) -> None:
    """Called in the validation loop after the batch.

    Args:
        outputs: The outputs of validation_step_end(validation_step(x))
        batch: The batched data as it is returned by the validation DataLoader.
        batch_idx: the index of the batch
        dataloader_idx: the index of the dataloader
    """
on_validation_batch_start(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None inherited

Called in the validation loop before anything happens for that batch.

Parameters:

Name Type Description Default
batch Any

The batched data as it is returned by the validation DataLoader.

required
batch_idx int

the index of the batch

required
dataloader_idx int

the index of the dataloader

required
Source code in zamba/models/efficientnet_models.py
def on_validation_batch_start(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None:
    """Called in the validation loop before anything happens for that batch.

    Args:
        batch: The batched data as it is returned by the validation DataLoader.
        batch_idx: the index of the batch
        dataloader_idx: the index of the dataloader
    """
on_validation_end(self) -> None inherited

Called at the end of validation.

Source code in zamba/models/efficientnet_models.py
def on_validation_end(self) -> None:
    """Called at the end of validation."""
on_validation_epoch_end(self) -> None inherited

Called in the validation loop at the very end of the epoch.

Source code in zamba/models/efficientnet_models.py
def on_validation_epoch_end(self) -> None:
    """Called in the validation loop at the very end of the epoch."""
on_validation_epoch_start(self) -> None inherited

Called in the validation loop at the very beginning of the epoch.

Source code in zamba/models/efficientnet_models.py
def on_validation_epoch_start(self) -> None:
    """Called in the validation loop at the very beginning of the epoch."""
on_validation_model_eval(self) -> None inherited

Sets the model to eval during the val loop.

Source code in zamba/models/efficientnet_models.py
def on_validation_model_eval(self) -> None:
    """Sets the model to eval during the val loop."""
    self.trainer.model.eval()
on_validation_model_train(self) -> None inherited

Sets the model to train during the val loop.

Source code in zamba/models/efficientnet_models.py
def on_validation_model_train(self) -> None:
    """Sets the model to train during the val loop."""
    self.trainer.model.train()
on_validation_start(self) -> None inherited

Called at the beginning of validation.

Source code in zamba/models/efficientnet_models.py
def on_validation_start(self) -> None:
    """Called at the beginning of validation."""
optimizer_step(self, epoch: int, batch_idx: int, optimizer: Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer], optimizer_idx: int = 0, optimizer_closure: Optional[Callable[[], Any]] = None, on_tpu: bool = False, using_native_amp: bool = False, using_lbfgs: bool = False) -> None inherited

Override this method to adjust the default way the :class:~pytorch_lightning.trainer.trainer.Trainer calls each optimizer. By default, Lightning calls step() and zero_grad() as shown in the example once per optimizer. This method (and zero_grad()) won't be called during the accumulation phase when Trainer(accumulate_grad_batches != 1).

Parameters:

Name Type Description Default
epoch int

Current epoch

required
batch_idx int

Index of current batch

required
optimizer Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer]

A PyTorch optimizer

required
optimizer_idx int

If you used multiple optimizers, this indexes into that list.

0
optimizer_closure Optional[Callable[[], Any]]

Closure for all optimizers. This closure must be executed as it includes the calls to training_step(), optimizer.zero_grad(), and backward().

None
on_tpu bool

True if TPU backward is required

False
using_native_amp bool

True if using native amp

False
using_lbfgs bool

True if the matching optimizer is :class:torch.optim.LBFGS

False

Examples::

# DEFAULT
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx,
                   optimizer_closure, on_tpu, using_native_amp, using_lbfgs):
    optimizer.step(closure=optimizer_closure)

# Alternating schedule for optimizer steps (i.e.: GANs)
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx,
                   optimizer_closure, on_tpu, using_native_amp, using_lbfgs):
    # update generator opt every step
    if optimizer_idx == 0:
        optimizer.step(closure=optimizer_closure)

    # update discriminator opt every 2 steps
    if optimizer_idx == 1:
        if (batch_idx + 1) % 2 == 0 :
            optimizer.step(closure=optimizer_closure)
        !!! else
            # call the closure by itself to run `training_step` + `backward` without an optimizer step
            optimizer_closure()

    # ...
    # add as many optimizers as you want

Here's another example showing how to use this for more advanced things such as learning rate warm-up:

.. code-block:: python

# learning rate warm-up
def optimizer_step(
    self,
    epoch,
    batch_idx,
    optimizer,
    optimizer_idx,
    optimizer_closure,
    on_tpu,
    using_native_amp,
    using_lbfgs,
):
    # warm up lr
    if self.trainer.global_step < 500:
        lr_scale = min(1.0, float(self.trainer.global_step + 1) / 500.0)
        for pg in optimizer.param_groups:
            pg["lr"] = lr_scale * self.learning_rate

    # update params
    optimizer.step(closure=optimizer_closure)
Source code in zamba/models/efficientnet_models.py
def optimizer_step(
    self,
    epoch: int,
    batch_idx: int,
    optimizer: Union[Optimizer, LightningOptimizer],
    optimizer_idx: int = 0,
    optimizer_closure: Optional[Callable[[], Any]] = None,
    on_tpu: bool = False,
    using_native_amp: bool = False,
    using_lbfgs: bool = False,
) -> None:
    r"""
    Override this method to adjust the default way the
    :class:`~pytorch_lightning.trainer.trainer.Trainer` calls each optimizer.
    By default, Lightning calls ``step()`` and ``zero_grad()`` as shown in the example
    once per optimizer. This method (and ``zero_grad()``) won't be called during the
    accumulation phase when ``Trainer(accumulate_grad_batches != 1)``.

    Args:
        epoch: Current epoch
        batch_idx: Index of current batch
        optimizer: A PyTorch optimizer
        optimizer_idx: If you used multiple optimizers, this indexes into that list.
        optimizer_closure: Closure for all optimizers. This closure must be executed as it includes the
            calls to ``training_step()``, ``optimizer.zero_grad()``, and ``backward()``.
        on_tpu: ``True`` if TPU backward is required
        using_native_amp: ``True`` if using native amp
        using_lbfgs: True if the matching optimizer is :class:`torch.optim.LBFGS`

    Examples::

        # DEFAULT
        def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx,
                           optimizer_closure, on_tpu, using_native_amp, using_lbfgs):
            optimizer.step(closure=optimizer_closure)

        # Alternating schedule for optimizer steps (i.e.: GANs)
        def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx,
                           optimizer_closure, on_tpu, using_native_amp, using_lbfgs):
            # update generator opt every step
            if optimizer_idx == 0:
                optimizer.step(closure=optimizer_closure)

            # update discriminator opt every 2 steps
            if optimizer_idx == 1:
                if (batch_idx + 1) % 2 == 0 :
                    optimizer.step(closure=optimizer_closure)
                else:
                    # call the closure by itself to run `training_step` + `backward` without an optimizer step
                    optimizer_closure()

            # ...
            # add as many optimizers as you want

    Here's another example showing how to use this for more advanced things such as
    learning rate warm-up:

    .. code-block:: python

        # learning rate warm-up
        def optimizer_step(
            self,
            epoch,
            batch_idx,
            optimizer,
            optimizer_idx,
            optimizer_closure,
            on_tpu,
            using_native_amp,
            using_lbfgs,
        ):
            # warm up lr
            if self.trainer.global_step < 500:
                lr_scale = min(1.0, float(self.trainer.global_step + 1) / 500.0)
                for pg in optimizer.param_groups:
                    pg["lr"] = lr_scale * self.learning_rate

            # update params
            optimizer.step(closure=optimizer_closure)

    """
    optimizer.step(closure=optimizer_closure)
optimizer_zero_grad(self, epoch: int, batch_idx: int, optimizer: Optimizer, optimizer_idx: int) inherited

Override this method to change the default behaviour of optimizer.zero_grad().

Parameters:

Name Type Description Default
epoch int

Current epoch

required
batch_idx int

Index of current batch

required
optimizer Optimizer

A PyTorch optimizer

required
optimizer_idx int

If you used multiple optimizers this indexes into that list.

required

Examples::

# DEFAULT
def optimizer_zero_grad(self, epoch, batch_idx, optimizer, optimizer_idx):
    optimizer.zero_grad()

# Set gradients to `None` instead of zero to improve performance.
def optimizer_zero_grad(self, epoch, batch_idx, optimizer, optimizer_idx):
    optimizer.zero_grad(set_to_none=True)

See :meth:torch.optim.Optimizer.zero_grad for the explanation of the above example.

Source code in zamba/models/efficientnet_models.py
def optimizer_zero_grad(self, epoch: int, batch_idx: int, optimizer: Optimizer, optimizer_idx: int):
    """Override this method to change the default behaviour of ``optimizer.zero_grad()``.

    Args:
        epoch: Current epoch
        batch_idx: Index of current batch
        optimizer: A PyTorch optimizer
        optimizer_idx: If you used multiple optimizers this indexes into that list.

    Examples::

        # DEFAULT
        def optimizer_zero_grad(self, epoch, batch_idx, optimizer, optimizer_idx):
            optimizer.zero_grad()

        # Set gradients to `None` instead of zero to improve performance.
        def optimizer_zero_grad(self, epoch, batch_idx, optimizer, optimizer_idx):
            optimizer.zero_grad(set_to_none=True)

    See :meth:`torch.optim.Optimizer.zero_grad` for the explanation of the above example.
    """
    optimizer.zero_grad()
optimizers(self, use_pl_optimizer: bool = True) -> Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer, List[torch.optim.optimizer.Optimizer], List[pytorch_lightning.core.optimizer.LightningOptimizer]] inherited

Returns the optimizer(s) that are being used during training. Useful for manual optimization.

Parameters:

Name Type Description Default
use_pl_optimizer bool

If True, will wrap the optimizer(s) in a :class:~pytorch_lightning.core.optimizer.LightningOptimizer for automatic handling of precision and profiling.

True

Returns:

Type Description
Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer, List[torch.optim.optimizer.Optimizer], List[pytorch_lightning.core.optimizer.LightningOptimizer]]

A single optimizer, or a list of optimizers in case multiple ones are present.

Source code in zamba/models/efficientnet_models.py
def optimizers(
    self, use_pl_optimizer: bool = True
) -> Union[Optimizer, LightningOptimizer, List[Optimizer], List[LightningOptimizer]]:
    """Returns the optimizer(s) that are being used during training. Useful for manual optimization.

    Args:
        use_pl_optimizer: If ``True``, will wrap the optimizer(s) in a
            :class:`~pytorch_lightning.core.optimizer.LightningOptimizer` for automatic handling of precision and
            profiling.

    Returns:
        A single optimizer, or a list of optimizers in case multiple ones are present.
    """
    if use_pl_optimizer:
        opts = list(self.trainer.lightning_optimizers.values())
    else:
        opts = self.trainer.optimizers

    # single optimizer
    if isinstance(opts, list) and len(opts) == 1 and isinstance(opts[0], (Optimizer, LightningOptimizer)):
        return opts[0]
    # multiple opts
    return opts
parameters(self, recurse: bool = True) -> Iterator[torch.nn.parameter.Parameter] inherited

Returns an iterator over module parameters.

This is typically passed to an optimizer.

Parameters:

Name Type Description Default
recurse bool

if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.

True

Yields:

Type Description
Parameter

module parameter

Example::

>>> for param in model.parameters():
>>>     print(type(param), param.size())
<class 'torch.Tensor'> (20L,)
<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
Source code in zamba/models/efficientnet_models.py
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
    r"""Returns an iterator over module parameters.

    This is typically passed to an optimizer.

    Args:
        recurse (bool): if True, then yields parameters of this module
            and all submodules. Otherwise, yields only parameters that
            are direct members of this module.

    Yields:
        Parameter: module parameter

    Example::

        >>> for param in model.parameters():
        >>>     print(type(param), param.size())
        <class 'torch.Tensor'> (20L,)
        <class 'torch.Tensor'> (20L, 1L, 5L, 5L)

    """
    for name, param in self.named_parameters(recurse=recurse):
        yield param
predict_dataloader(self) -> Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader]] inherited

Implement one or multiple PyTorch DataLoaders for prediction.

It's recommended that all data downloads and preparation happen in :meth:prepare_data.

  • :meth:~pytorch_lightning.trainer.Trainer.fit
  • ...
  • :meth:prepare_data
  • :meth:train_dataloader
  • :meth:val_dataloader
  • :meth:test_dataloader

!!! note Lightning adds the correct sampler for distributed and arbitrary hardware There is no need to set it yourself.

Returns:

Type Description
A

class:torch.utils.data.DataLoader or a sequence of them specifying prediction samples.

!!! note In the case where you return multiple prediction dataloaders, the :meth:predict will have an argument dataloader_idx which matches the order here.

Source code in zamba/models/efficientnet_models.py
def predict_dataloader(self) -> EVAL_DATALOADERS:
    r"""
    Implement one or multiple PyTorch DataLoaders for prediction.

    It's recommended that all data downloads and preparation happen in :meth:`prepare_data`.

    - :meth:`~pytorch_lightning.trainer.Trainer.fit`
    - ...
    - :meth:`prepare_data`
    - :meth:`train_dataloader`
    - :meth:`val_dataloader`
    - :meth:`test_dataloader`

    Note:
        Lightning adds the correct sampler for distributed and arbitrary hardware
        There is no need to set it yourself.

    Return:
        A :class:`torch.utils.data.DataLoader` or a sequence of them specifying prediction samples.

    Note:
        In the case where you return multiple prediction dataloaders, the :meth:`predict`
        will have an argument ``dataloader_idx`` which matches the order here.
    """
    raise NotImplementedError("`predict_dataloader` must be implemented to be used with the Lightning Trainer")
predict_step(self, batch, batch_idx, dataloader_idx: Optional[int] = None) inherited

Step function called during :meth:~pytorch_lightning.trainer.trainer.Trainer.predict. By default, it calls :meth:~pytorch_lightning.core.lightning.LightningModule.forward. Override to add any processing logic.

The :meth:~pytorch_lightning.core.lightning.LightningModule.predict_step is used to scale inference on multi-devices.

To prevent an OOM error, it is possible to use :class:~pytorch_lightning.callbacks.BasePredictionWriter callback to write the predictions to disk or database after each batch or on epoch end.

The :class:~pytorch_lightning.callbacks.BasePredictionWriter should be used while using a spawn based accelerator. This happens for Trainer(strategy="ddp_spawn") or training on 8 TPU cores with Trainer(tpu_cores=8) as predictions won't be returned.

Example ::

class MyModel(LightningModule):

    def predicts_step(self, batch, batch_idx, dataloader_idx):
        return self(batch)

dm = ...
model = MyModel()
trainer = Trainer(gpus=2)
predictions = trainer.predict(model, dm)

Parameters:

Name Type Description Default
batch

Current batch

required
batch_idx

Index of current batch

required
dataloader_idx Optional[int]

Index of the current dataloader

None

Returns:

Type Description

Predicted output

Source code in zamba/models/efficientnet_models.py
def predict_step(self, batch, batch_idx, dataloader_idx: Optional[int] = None):
    x, y = batch
    y_hat = self(x)
    pred = torch.sigmoid(y_hat).cpu().numpy()
    return pred
prepare_data(self) -> None inherited

Use this to download and prepare data.

.. warning:: DO NOT set state to the model (use setup instead) since this is NOT called on every GPU in DDP/TPU

Example::

def prepare_data(self):
    # good
    download_data()
    tokenize()
    etc()

    # bad
    self.split = data_split
    self.some_state = some_other_state()

In DDP prepare_data can be called in two ways (using Trainer(prepare_data_per_node)):

  1. Once per node. This is the default and is only called on LOCAL_RANK=0.
  2. Once in total. Only called on GLOBAL_RANK=0.

Example::

# DEFAULT
# called once per node on LOCAL_RANK=0 of that node
Trainer(prepare_data_per_node=True)

# call on GLOBAL_RANK=0 (great for shared file systems)
Trainer(prepare_data_per_node=False)

!!! note Setting prepare_data_per_node with the trainer flag is deprecated and will be removed in v1.7.0. Please set prepare_data_per_node in LightningDataModule or LightningModule directly instead.

This is called before requesting the dataloaders:

.. code-block:: python

model.prepare_data()
initialize_distributed()
model.setup(stage)
model.train_dataloader()
model.val_dataloader()
model.test_dataloader()
Source code in zamba/models/efficientnet_models.py
def prepare_data(self) -> None:
    """Use this to download and prepare data.

    .. warning:: DO NOT set state to the model (use `setup` instead)
        since this is NOT called on every GPU in DDP/TPU

    Example::

        def prepare_data(self):
            # good
            download_data()
            tokenize()
            etc()

            # bad
            self.split = data_split
            self.some_state = some_other_state()

    In DDP prepare_data can be called in two ways (using Trainer(prepare_data_per_node)):

    1. Once per node. This is the default and is only called on LOCAL_RANK=0.
    2. Once in total. Only called on GLOBAL_RANK=0.

    Example::

        # DEFAULT
        # called once per node on LOCAL_RANK=0 of that node
        Trainer(prepare_data_per_node=True)

        # call on GLOBAL_RANK=0 (great for shared file systems)
        Trainer(prepare_data_per_node=False)

    Note:
        Setting ``prepare_data_per_node`` with the trainer flag is deprecated and will be removed in v1.7.0.
        Please set ``prepare_data_per_node`` in LightningDataModule or LightningModule directly instead.

    This is called before requesting the dataloaders:

    .. code-block:: python

        model.prepare_data()
        initialize_distributed()
        model.setup(stage)
        model.train_dataloader()
        model.val_dataloader()
        model.test_dataloader()
    """
print(self, *args, **kwargs) -> None inherited

Prints only from process 0. Use this in any distributed mode to log only once.

Parameters:

Name Type Description Default
*args

The thing to print. The same as for Python's built-in print function.

()
**kwargs

The same as for Python's built-in print function.

{}

Example::

def forward(self, x):
    self.print(x, 'in forward')
Source code in zamba/models/efficientnet_models.py
def print(self, *args, **kwargs) -> None:
    r"""
    Prints only from process 0. Use this in any distributed mode to log only once.

    Args:
        *args: The thing to print. The same as for Python's built-in print function.
        **kwargs: The same as for Python's built-in print function.

    Example::

        def forward(self, x):
            self.print(x, 'in forward')

    """
    if self.trainer.is_global_zero:
        progress_bar = self.trainer.progress_bar_callback
        if progress_bar is not None and progress_bar.is_enabled:
            progress_bar.print(*args, **kwargs)
        else:
            print(*args, **kwargs)
register_backward_hook(self, hook: Callable[[Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, torch.Tensor]]) -> RemovableHandle inherited

Registers a backward hook on the module.

This function is deprecated in favor of :meth:~torch.nn.Module.register_full_backward_hook and the behavior of this function will change in future versions.

Returns:

Type Description

class:torch.utils.hooks.RemovableHandle: a handle that can be used to remove the added hook by calling handle.remove()

Source code in zamba/models/efficientnet_models.py
def register_backward_hook(
    self, hook: Callable[['Module', _grad_t, _grad_t], Union[None, Tensor]]
) -> RemovableHandle:
    r"""Registers a backward hook on the module.

    This function is deprecated in favor of :meth:`~torch.nn.Module.register_full_backward_hook` and
    the behavior of this function will change in future versions.

    Returns:
        :class:`torch.utils.hooks.RemovableHandle`:
            a handle that can be used to remove the added hook by calling
            ``handle.remove()``

    """
    if self._is_full_backward_hook is True:
        raise RuntimeError("Cannot use both regular backward hooks and full backward hooks on a "
                           "single Module. Please use only one of them.")

    self._is_full_backward_hook = False

    handle = hooks.RemovableHandle(self._backward_hooks)
    self._backward_hooks[handle.id] = hook
    return handle
register_buffer(self, name: str, tensor: Optional[torch.Tensor], persistent: bool = True) -> None inherited

Adds a buffer to the module.

This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm's running_mean is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting :attr:persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's :attr:state_dict.

Buffers can be accessed as attributes using given names.

Parameters:

Name Type Description Default
name string

name of the buffer. The buffer can be accessed from this module using the given name

required
tensor Tensor or None

buffer to be registered. If None, then operations that run on buffers, such as :attr:cuda, are ignored. If None, the buffer is not included in the module's :attr:state_dict.

required
persistent bool

whether the buffer is part of this module's :attr:state_dict.

True

Example::

>>> self.register_buffer('running_mean', torch.zeros(num_features))
Source code in zamba/models/efficientnet_models.py
def register_buffer(self, name: str, tensor: Optional[Tensor], persistent: bool = True) -> None:
    r"""Adds a buffer to the module.

    This is typically used to register a buffer that should not to be
    considered a model parameter. For example, BatchNorm's ``running_mean``
    is not a parameter, but is part of the module's state. Buffers, by
    default, are persistent and will be saved alongside parameters. This
    behavior can be changed by setting :attr:`persistent` to ``False``. The
    only difference between a persistent buffer and a non-persistent buffer
    is that the latter will not be a part of this module's
    :attr:`state_dict`.

    Buffers can be accessed as attributes using given names.

    Args:
        name (string): name of the buffer. The buffer can be accessed
            from this module using the given name
        tensor (Tensor or None): buffer to be registered. If ``None``, then operations
            that run on buffers, such as :attr:`cuda`, are ignored. If ``None``,
            the buffer is **not** included in the module's :attr:`state_dict`.
        persistent (bool): whether the buffer is part of this module's
            :attr:`state_dict`.

    Example::

        >>> self.register_buffer('running_mean', torch.zeros(num_features))

    """
    if persistent is False and isinstance(self, torch.jit.ScriptModule):
        raise RuntimeError("ScriptModule does not support non-persistent buffers")

    if '_buffers' not in self.__dict__:
        raise AttributeError(
            "cannot assign buffer before Module.__init__() call")
    elif not isinstance(name, torch._six.string_classes):
        raise TypeError("buffer name should be a string. "
                        "Got {}".format(torch.typename(name)))
    elif '.' in name:
        raise KeyError("buffer name can't contain \".\"")
    elif name == '':
        raise KeyError("buffer name can't be empty string \"\"")
    elif hasattr(self, name) and name not in self._buffers:
        raise KeyError("attribute '{}' already exists".format(name))
    elif tensor is not None and not isinstance(tensor, torch.Tensor):
        raise TypeError("cannot assign '{}' object to buffer '{}' "
                        "(torch Tensor or None required)"
                        .format(torch.typename(tensor), name))
    else:
        self._buffers[name] = tensor
        if persistent:
            self._non_persistent_buffers_set.discard(name)
        else:
            self._non_persistent_buffers_set.add(name)
register_forward_hook(self, hook: Callable[..., NoneType]) -> RemovableHandle inherited

Registers a forward hook on the module.

The hook will be called every time after :func:forward has computed an output. It should have the following signature::

hook(module, input, output) -> None or modified output

The input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after :func:forward is called.

Returns:

Type Description

class:torch.utils.hooks.RemovableHandle: a handle that can be used to remove the added hook by calling handle.remove()

Source code in zamba/models/efficientnet_models.py
def register_forward_hook(self, hook: Callable[..., None]) -> RemovableHandle:
    r"""Registers a forward hook on the module.

    The hook will be called every time after :func:`forward` has computed an output.
    It should have the following signature::

        hook(module, input, output) -> None or modified output

    The input contains only the positional arguments given to the module.
    Keyword arguments won't be passed to the hooks and only to the ``forward``.
    The hook can modify the output. It can modify the input inplace but
    it will not have effect on forward since this is called after
    :func:`forward` is called.

    Returns:
        :class:`torch.utils.hooks.RemovableHandle`:
            a handle that can be used to remove the added hook by calling
            ``handle.remove()``
    """
    handle = hooks.RemovableHandle(self._forward_hooks)
    self._forward_hooks[handle.id] = hook
    return handle
register_forward_pre_hook(self, hook: Callable[..., NoneType]) -> RemovableHandle inherited

Registers a forward pre-hook on the module.

The hook will be called every time before :func:forward is invoked. It should have the following signature::

hook(module, input) -> None or modified input

The input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned(unless that value is already a tuple).

Returns:

Type Description

class:torch.utils.hooks.RemovableHandle: a handle that can be used to remove the added hook by calling handle.remove()

Source code in zamba/models/efficientnet_models.py
def register_forward_pre_hook(self, hook: Callable[..., None]) -> RemovableHandle:
    r"""Registers a forward pre-hook on the module.

    The hook will be called every time before :func:`forward` is invoked.
    It should have the following signature::

        hook(module, input) -> None or modified input

    The input contains only the positional arguments given to the module.
    Keyword arguments won't be passed to the hooks and only to the ``forward``.
    The hook can modify the input. User can either return a tuple or a
    single modified value in the hook. We will wrap the value into a tuple
    if a single value is returned(unless that value is already a tuple).

    Returns:
        :class:`torch.utils.hooks.RemovableHandle`:
            a handle that can be used to remove the added hook by calling
            ``handle.remove()``
    """
    handle = hooks.RemovableHandle(self._forward_pre_hooks)
    self._forward_pre_hooks[handle.id] = hook
    return handle
register_full_backward_hook(self, hook: Callable[[Module, Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, torch.Tensor]]) -> RemovableHandle inherited

Registers a backward hook on the module.

The hook will be called every time the gradients with respect to module inputs are computed. The hook should have the following signature::

hook(module, grad_input, grad_output) -> tuple(Tensor) or None

The :attr:grad_input and :attr:grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of :attr:grad_input in subsequent computations. :attr:grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in :attr:grad_input and :attr:grad_output will be None for all non-Tensor arguments.

For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function.

.. warning :: Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.

Returns:

Type Description

class:torch.utils.hooks.RemovableHandle: a handle that can be used to remove the added hook by calling handle.remove()

Source code in zamba/models/efficientnet_models.py
def register_full_backward_hook(
    self, hook: Callable[['Module', _grad_t, _grad_t], Union[None, Tensor]]
) -> RemovableHandle:
    r"""Registers a backward hook on the module.

    The hook will be called every time the gradients with respect to module
    inputs are computed. The hook should have the following signature::

        hook(module, grad_input, grad_output) -> tuple(Tensor) or None

    The :attr:`grad_input` and :attr:`grad_output` are tuples that contain the gradients
    with respect to the inputs and outputs respectively. The hook should
    not modify its arguments, but it can optionally return a new gradient with
    respect to the input that will be used in place of :attr:`grad_input` in
    subsequent computations. :attr:`grad_input` will only correspond to the inputs given
    as positional arguments and all kwarg arguments are ignored. Entries
    in :attr:`grad_input` and :attr:`grad_output` will be ``None`` for all non-Tensor
    arguments.

    For technical reasons, when this hook is applied to a Module, its forward function will
    receive a view of each Tensor passed to the Module. Similarly the caller will receive a view
    of each Tensor returned by the Module's forward function.

    .. warning ::
        Modifying inputs or outputs inplace is not allowed when using backward hooks and
        will raise an error.

    Returns:
        :class:`torch.utils.hooks.RemovableHandle`:
            a handle that can be used to remove the added hook by calling
            ``handle.remove()``

    """
    if self._is_full_backward_hook is False:
        raise RuntimeError("Cannot use both regular backward hooks and full backward hooks on a "
                           "single Module. Please use only one of them.")

    self._is_full_backward_hook = True

    handle = hooks.RemovableHandle(self._backward_hooks)
    self._backward_hooks[handle.id] = hook
    return handle
register_parameter(self, name: str, param: Optional[torch.nn.parameter.Parameter]) -> None inherited

Adds a parameter to the module.

The parameter can be accessed as an attribute using given name.

Parameters:

Name Type Description Default
name string

name of the parameter. The parameter can be accessed from this module using the given name

required
param Parameter or None

parameter to be added to the module. If None, then operations that run on parameters, such as :attr:cuda, are ignored. If None, the parameter is not included in the module's :attr:state_dict.

required
Source code in zamba/models/efficientnet_models.py
def register_parameter(self, name: str, param: Optional[Parameter]) -> None:
    r"""Adds a parameter to the module.

    The parameter can be accessed as an attribute using given name.

    Args:
        name (string): name of the parameter. The parameter can be accessed
            from this module using the given name
        param (Parameter or None): parameter to be added to the module. If
            ``None``, then operations that run on parameters, such as :attr:`cuda`,
            are ignored. If ``None``, the parameter is **not** included in the
            module's :attr:`state_dict`.
    """
    if '_parameters' not in self.__dict__:
        raise AttributeError(
            "cannot assign parameter before Module.__init__() call")

    elif not isinstance(name, torch._six.string_classes):
        raise TypeError("parameter name should be a string. "
                        "Got {}".format(torch.typename(name)))
    elif '.' in name:
        raise KeyError("parameter name can't contain \".\"")
    elif name == '':
        raise KeyError("parameter name can't be empty string \"\"")
    elif hasattr(self, name) and name not in self._parameters:
        raise KeyError("attribute '{}' already exists".format(name))

    if param is None:
        self._parameters[name] = None
    elif not isinstance(param, Parameter):
        raise TypeError("cannot assign '{}' object to parameter '{}' "
                        "(torch.nn.Parameter or None required)"
                        .format(torch.typename(param), name))
    elif param.grad_fn:
        raise ValueError(
            "Cannot assign non-leaf Tensor to parameter '{0}'. Model "
            "parameters must be created explicitly. To express '{0}' "
            "as a function of another Tensor, compute the value in "
            "the forward() method.".format(name))
    else:
        self._parameters[name] = param
requires_grad_(self: ~T, requires_grad: bool = True) -> ~T inherited

Change if autograd should record operations on parameters in this module.

This method sets the parameters' :attr:requires_grad attributes in-place.

This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).

See :ref:locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.

Parameters:

Name Type Description Default
requires_grad bool

whether autograd should record operations on parameters in this module. Default: True.

True

Returns:

Type Description
Module

self

Source code in zamba/models/efficientnet_models.py
def requires_grad_(self: T, requires_grad: bool = True) -> T:
    r"""Change if autograd should record operations on parameters in this
    module.

    This method sets the parameters' :attr:`requires_grad` attributes
    in-place.

    This method is helpful for freezing part of the module for finetuning
    or training parts of a model individually (e.g., GAN training).

    See :ref:`locally-disable-grad-doc` for a comparison between
    `.requires_grad_()` and several similar mechanisms that may be confused with it.

    Args:
        requires_grad (bool): whether autograd should record operations on
                              parameters in this module. Default: ``True``.

    Returns:
        Module: self
    """
    for p in self.parameters():
        p.requires_grad_(requires_grad)
    return self
save_hyperparameters(self, *args, *, ignore: Union[Sequence[str], str] = None, frame: Optional[frame] = None, logger: bool = True) -> None inherited

Save arguments to hparams attribute.

Parameters:

Name Type Description Default
args

single object of dict, NameSpace or OmegaConf or string names or arguments from class __init__

()
ignore Union[Sequence[str], str]

an argument name or a list of argument names from class __init__ to be ignored

None
frame Optional[frame]

a frame object. Default is None

None
logger bool

Whether to send the hyperparameters to the logger. Default: True

True

Example:: >>> class ManuallyArgsModel(HyperparametersMixin): ... def init(self, arg1, arg2, arg3): ... super().init() ... # manually assign arguments ... self.save_hyperparameters('arg1', 'arg3') ... def forward(self, args, *kwargs): ... ... >>> model = ManuallyArgsModel(1, 'abc', 3.14) >>> model.hparams "arg1": 1 "arg3": 3.14

>>> class AutomaticArgsModel(HyperparametersMixin):
...     def __init__(self, arg1, arg2, arg3):
...         super().__init__()
...         # equivalent automatic
...         self.save_hyperparameters()
...     def forward(self, *args, **kwargs):
...         ...
>>> model = AutomaticArgsModel(1, 'abc', 3.14)
>>> model.hparams
"arg1": 1
"arg2": abc
"arg3": 3.14

>>> class SingleArgModel(HyperparametersMixin):
...     def __init__(self, params):
...         super().__init__()
...         # manually assign single argument
...         self.save_hyperparameters(params)
...     def forward(self, *args, **kwargs):
...         ...
>>> model = SingleArgModel(Namespace(p1=1, p2='abc', p3=3.14))
>>> model.hparams
"p1": 1
"p2": abc
"p3": 3.14

>>> class ManuallyArgsModel(HyperparametersMixin):
...     def __init__(self, arg1, arg2, arg3):
...         super().__init__()
...         # pass argument(s) to ignore as a string or in a list
...         self.save_hyperparameters(ignore='arg2')
...     def forward(self, *args, **kwargs):
...         ...
>>> model = ManuallyArgsModel(1, 'abc', 3.14)
>>> model.hparams
"arg1": 1
"arg3": 3.14
Source code in zamba/models/efficientnet_models.py
def save_hyperparameters(
    self,
    *args,
    ignore: Optional[Union[Sequence[str], str]] = None,
    frame: Optional[types.FrameType] = None,
    logger: bool = True,
) -> None:
    """Save arguments to ``hparams`` attribute.

    Args:
        args: single object of `dict`, `NameSpace` or `OmegaConf`
            or string names or arguments from class ``__init__``
        ignore: an argument name or a list of argument names from
            class ``__init__`` to be ignored
        frame: a frame object. Default is None
        logger: Whether to send the hyperparameters to the logger. Default: True

    Example::
        >>> class ManuallyArgsModel(HyperparametersMixin):
        ...     def __init__(self, arg1, arg2, arg3):
        ...         super().__init__()
        ...         # manually assign arguments
        ...         self.save_hyperparameters('arg1', 'arg3')
        ...     def forward(self, *args, **kwargs):
        ...         ...
        >>> model = ManuallyArgsModel(1, 'abc', 3.14)
        >>> model.hparams
        "arg1": 1
        "arg3": 3.14

        >>> class AutomaticArgsModel(HyperparametersMixin):
        ...     def __init__(self, arg1, arg2, arg3):
        ...         super().__init__()
        ...         # equivalent automatic
        ...         self.save_hyperparameters()
        ...     def forward(self, *args, **kwargs):
        ...         ...
        >>> model = AutomaticArgsModel(1, 'abc', 3.14)
        >>> model.hparams
        "arg1": 1
        "arg2": abc
        "arg3": 3.14

        >>> class SingleArgModel(HyperparametersMixin):
        ...     def __init__(self, params):
        ...         super().__init__()
        ...         # manually assign single argument
        ...         self.save_hyperparameters(params)
        ...     def forward(self, *args, **kwargs):
        ...         ...
        >>> model = SingleArgModel(Namespace(p1=1, p2='abc', p3=3.14))
        >>> model.hparams
        "p1": 1
        "p2": abc
        "p3": 3.14

        >>> class ManuallyArgsModel(HyperparametersMixin):
        ...     def __init__(self, arg1, arg2, arg3):
        ...         super().__init__()
        ...         # pass argument(s) to ignore as a string or in a list
        ...         self.save_hyperparameters(ignore='arg2')
        ...     def forward(self, *args, **kwargs):
        ...         ...
        >>> model = ManuallyArgsModel(1, 'abc', 3.14)
        >>> model.hparams
        "arg1": 1
        "arg3": 3.14
    """
    self._log_hyperparams = logger
    # the frame needs to be created in this file.
    if not frame:
        frame = inspect.currentframe().f_back
    save_hyperparameters(self, *args, ignore=ignore, frame=frame)
set_extra_state(self, state: Any) inherited

This function is called from :func:load_state_dict to handle any extra state found within the state_dict. Implement this function and a corresponding :func:get_extra_state for your module if you need to store extra state within its state_dict.

Parameters:

Name Type Description Default
state dict

Extra state from the state_dict

required
Source code in zamba/models/efficientnet_models.py
def set_extra_state(self, state: Any):
    """
    This function is called from :func:`load_state_dict` to handle any extra state
    found within the `state_dict`. Implement this function and a corresponding
    :func:`get_extra_state` for your module if you need to store extra state within its
    `state_dict`.

    Args:
        state (dict): Extra state from the `state_dict`
    """
    raise RuntimeError(
        "Reached a code path in Module.set_extra_state() that should never be called. "
        "Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.md "
        "to report this bug.")
setup(self, stage: Optional[str] = None) -> None inherited

Called at the beginning of fit (train + validate), validate, test, and predict. This is a good hook when you need to build models dynamically or adjust something about them. This hook is called on every process when using DDP.

Parameters:

Name Type Description Default
stage Optional[str]

either 'fit', 'validate', 'test', or 'predict'

None

Example::

class LitModel(...):
    def __init__(self):
        self.l1 = None

    def prepare_data(self):
        download_data()
        tokenize()

        # don't do this
        self.something = else

    def setup(stage):
        data = Load_data(...)
        self.l1 = nn.Linear(28, data.num_classes)
Source code in zamba/models/efficientnet_models.py
def setup(self, stage: Optional[str] = None) -> None:
    """Called at the beginning of fit (train + validate), validate, test, and predict. This is a good hook when
    you need to build models dynamically or adjust something about them. This hook is called on every process
    when using DDP.

    Args:
        stage: either ``'fit'``, ``'validate'``, ``'test'``, or ``'predict'``

    Example::

        class LitModel(...):
            def __init__(self):
                self.l1 = None

            def prepare_data(self):
                download_data()
                tokenize()

                # don't do this
                self.something = else

            def setup(stage):
                data = Load_data(...)
                self.l1 = nn.Linear(28, data.num_classes)
    """
share_memory(self: ~T) -> ~T inherited

See :meth:torch.Tensor.share_memory_

Source code in zamba/models/efficientnet_models.py
def share_memory(self: T) -> T:
    r"""See :meth:`torch.Tensor.share_memory_`"""
    return self._apply(lambda t: t.share_memory_())
state_dict(self, destination = None, prefix = '', keep_vars = False) inherited

Returns a dictionary containing a whole state of the module.

Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.

Returns:

Type Description
dict

a dictionary containing a whole state of the module

Example::

>>> module.state_dict().keys()
['bias', 'weight']
Source code in zamba/models/efficientnet_models.py
def state_dict(self, destination=None, prefix='', keep_vars=False):
    r"""Returns a dictionary containing a whole state of the module.

    Both parameters and persistent buffers (e.g. running averages) are
    included. Keys are corresponding parameter and buffer names.
    Parameters and buffers set to ``None`` are not included.

    Returns:
        dict:
            a dictionary containing a whole state of the module

    Example::

        >>> module.state_dict().keys()
        ['bias', 'weight']

    """
    if destination is None:
        destination = OrderedDict()
        destination._metadata = OrderedDict()
    destination._metadata[prefix[:-1]] = local_metadata = dict(version=self._version)
    self._save_to_state_dict(destination, prefix, keep_vars)
    for name, module in self._modules.items():
        if module is not None:
            module.state_dict(destination, prefix + name + '.', keep_vars=keep_vars)
    for hook in self._state_dict_hooks.values():
        hook_result = hook(self, destination, prefix, local_metadata)
        if hook_result is not None:
            destination = hook_result
    return destination
summarize(self, mode: Optional[str] = 'top', max_depth: Optional[int] = None) -> Optional[pytorch_lightning.utilities.model_summary.ModelSummary] inherited

Summarize this LightningModule.

.. deprecated:: v1.5 This method was deprecated in v1.5 in favor of pytorch_lightning.utilities.model_summary.summarize and will be removed in v1.7.

Parameters:

Name Type Description Default
mode Optional[str]

Can be either 'top' (summarize only direct submodules) or 'full' (summarize all layers).

.. deprecated:: v1.4 This parameter was deprecated in v1.4 in favor of max_depth and will be removed in v1.6.

'top'
max_depth Optional[int]

The maximum depth of layer nesting that the summary will include. A value of 0 turns the layer summary off. Default: 1.

None

Returns:

Type Description
Optional[pytorch_lightning.utilities.model_summary.ModelSummary]

The model summary object

Source code in zamba/models/efficientnet_models.py
def summarize(self, mode: Optional[str] = "top", max_depth: Optional[int] = None) -> Optional[ModelSummary]:
    """Summarize this LightningModule.

    .. deprecated:: v1.5
        This method was deprecated in v1.5 in favor of `pytorch_lightning.utilities.model_summary.summarize`
        and will be removed in v1.7.

    Args:
        mode: Can be either ``'top'`` (summarize only direct submodules) or ``'full'`` (summarize all layers).

            .. deprecated:: v1.4
                This parameter was deprecated in v1.4 in favor of `max_depth` and will be removed in v1.6.

        max_depth: The maximum depth of layer nesting that the summary will include. A value of 0 turns the
            layer summary off. Default: 1.

    Return:
        The model summary object
    """
    warning_cache.deprecation(
        "The `LightningModule.summarize` method is deprecated in v1.5 and will be removed in v1.7. "
        "Use `pytorch_lightning.utilities.model_summary.summarize` instead.",
        stacklevel=6,
    )

    return summarize(self, mode, max_depth)
tbptt_split_batch(self, batch: Any, split_size: int) -> List[Any] inherited

When using truncated backpropagation through time, each batch must be split along the time dimension. Lightning handles this by default, but for custom behavior override this function.

Parameters:

Name Type Description Default
batch Any

Current batch

required
split_size int

The size of the split

required

Returns:

Type Description
List of batch splits. Each split will be passed to

meth:training_step to enable truncated back propagation through time. The default implementation splits root level Tensors and Sequences at dim=1 (i.e. time dim). It assumes that each time dim is the same length.

Examples::

def tbptt_split_batch(self, batch, split_size):
    splits = []
    for t in range(0, time_dims[0], split_size):
        batch_split = []
        for i, x in enumerate(batch):
            if isinstance(x, torch.Tensor):
                split_x = x[:, t:t + split_size]
            elif isinstance(x, collections.Sequence):
                split_x = [None] * len(x)
                for batch_idx in range(len(x)):
                  split_x[batch_idx] = x[batch_idx][t:t + split_size]
            batch_split.append(split_x)
        splits.append(batch_split)
    return splits

!!! note Called in the training loop after :meth:~pytorch_lightning.callbacks.base.Callback.on_batch_start if :paramref:~pytorch_lightning.core.lightning.LightningModule.truncated_bptt_steps > 0. Each returned batch split is passed separately to :meth:training_step.

Source code in zamba/models/efficientnet_models.py
def tbptt_split_batch(self, batch: Any, split_size: int) -> List[Any]:
    r"""
    When using truncated backpropagation through time, each batch must be split along the
    time dimension. Lightning handles this by default, but for custom behavior override
    this function.

    Args:
        batch: Current batch
        split_size: The size of the split

    Return:
        List of batch splits. Each split will be passed to :meth:`training_step` to enable truncated
        back propagation through time. The default implementation splits root level Tensors and
        Sequences at dim=1 (i.e. time dim). It assumes that each time dim is the same length.

    Examples::

        def tbptt_split_batch(self, batch, split_size):
            splits = []
            for t in range(0, time_dims[0], split_size):
                batch_split = []
                for i, x in enumerate(batch):
                    if isinstance(x, torch.Tensor):
                        split_x = x[:, t:t + split_size]
                    elif isinstance(x, collections.Sequence):
                        split_x = [None] * len(x)
                        for batch_idx in range(len(x)):
                          split_x[batch_idx] = x[batch_idx][t:t + split_size]
                    batch_split.append(split_x)
                splits.append(batch_split)
            return splits

    Note:
        Called in the training loop after
        :meth:`~pytorch_lightning.callbacks.base.Callback.on_batch_start`
        if :paramref:`~pytorch_lightning.core.lightning.LightningModule.truncated_bptt_steps` > 0.
        Each returned batch split is passed separately to :meth:`training_step`.
    """
    time_dims = [len(x[0]) for x in batch if isinstance(x, (torch.Tensor, collections.Sequence))]
    assert len(time_dims) >= 1, "Unable to determine batch time dimension"
    assert all(x == time_dims[0] for x in time_dims), "Batch time dimension length is ambiguous"

    splits = []
    for t in range(0, time_dims[0], split_size):
        batch_split = []
        for i, x in enumerate(batch):
            if isinstance(x, torch.Tensor):
                split_x = x[:, t : t + split_size]
            elif isinstance(x, collections.Sequence):
                split_x = [None] * len(x)
                for batch_idx in range(len(x)):
                    split_x[batch_idx] = x[batch_idx][t : t + split_size]

            batch_split.append(split_x)

        splits.append(batch_split)

    return splits
teardown(self, stage: Optional[str] = None) -> None inherited

Called at the end of fit (train + validate), validate, test, predict, or tune.

Parameters:

Name Type Description Default
stage Optional[str]

either 'fit', 'validate', 'test', or 'predict'

None
Source code in zamba/models/efficientnet_models.py
def teardown(self, stage: Optional[str] = None) -> None:
    """Called at the end of fit (train + validate), validate, test, predict, or tune.

    Args:
        stage: either ``'fit'``, ``'validate'``, ``'test'``, or ``'predict'``
    """
test_dataloader(self) -> Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader]] inherited

Implement one or multiple PyTorch DataLoaders for testing.

The dataloader you return will not be reloaded unless you set :paramref:~pytorch_lightning.trainer.Trainer.reload_dataloaders_every_n_epochs to a postive integer.

For data processing use the following pattern:

- download in :meth:`prepare_data`
- process and split in :meth:`setup`

However, the above are only necessary for distributed processing.

.. warning:: do not assign state in prepare_data

  • :meth:~pytorch_lightning.trainer.Trainer.fit
  • ...
  • :meth:prepare_data
  • :meth:setup
  • :meth:train_dataloader
  • :meth:val_dataloader
  • :meth:test_dataloader

!!! note Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.

Returns:

Type Description
A

class:torch.utils.data.DataLoader or a sequence of them specifying testing samples.

Example::

def test_dataloader(self):
    transform = transforms.Compose([transforms.ToTensor(),
                                    transforms.Normalize((0.5,), (1.0,))])
    dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform,
                    download=True)
    loader = torch.utils.data.DataLoader(
        dataset=dataset,
        batch_size=self.batch_size,
        shuffle=False
    )

    return loader

# can also return multiple dataloaders
def test_dataloader(self):
    return [loader_a, loader_b, ..., loader_n]

!!! note If you don't need a test dataset and a :meth:test_step, you don't need to implement this method.

!!! note In the case where you return multiple test dataloaders, the :meth:test_step will have an argument dataloader_idx which matches the order here.

Source code in zamba/models/efficientnet_models.py
def test_dataloader(self) -> EVAL_DATALOADERS:
    r"""
    Implement one or multiple PyTorch DataLoaders for testing.

    The dataloader you return will not be reloaded unless you set
    :paramref:`~pytorch_lightning.trainer.Trainer.reload_dataloaders_every_n_epochs` to
    a postive integer.

    For data processing use the following pattern:

        - download in :meth:`prepare_data`
        - process and split in :meth:`setup`

    However, the above are only necessary for distributed processing.

    .. warning:: do not assign state in prepare_data


    - :meth:`~pytorch_lightning.trainer.Trainer.fit`
    - ...
    - :meth:`prepare_data`
    - :meth:`setup`
    - :meth:`train_dataloader`
    - :meth:`val_dataloader`
    - :meth:`test_dataloader`

    Note:
        Lightning adds the correct sampler for distributed and arbitrary hardware.
        There is no need to set it yourself.

    Return:
        A :class:`torch.utils.data.DataLoader` or a sequence of them specifying testing samples.

    Example::

        def test_dataloader(self):
            transform = transforms.Compose([transforms.ToTensor(),
                                            transforms.Normalize((0.5,), (1.0,))])
            dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform,
                            download=True)
            loader = torch.utils.data.DataLoader(
                dataset=dataset,
                batch_size=self.batch_size,
                shuffle=False
            )

            return loader

        # can also return multiple dataloaders
        def test_dataloader(self):
            return [loader_a, loader_b, ..., loader_n]

    Note:
        If you don't need a test dataset and a :meth:`test_step`, you don't need to implement
        this method.

    Note:
        In the case where you return multiple test dataloaders, the :meth:`test_step`
        will have an argument ``dataloader_idx`` which matches the order here.
    """
    raise NotImplementedError("`test_dataloader` must be implemented to be used with the Lightning Trainer")
test_epoch_end(self, outputs: List[Dict[str, numpy.ndarray]]) inherited

Called at the end of a test epoch with the output of all test steps.

.. code-block:: python

# the pseudocode for these calls
test_outs = []
for test_batch in test_data:
    out = test_step(test_batch)
    test_outs.append(out)
test_epoch_end(test_outs)

Parameters:

Name Type Description Default
outputs List[Dict[str, numpy.ndarray]]

List of outputs you defined in :meth:test_step_end, or if there are multiple dataloaders, a list containing a list of outputs for each dataloader

required

Returns:

Type Description

None

!!! note If you didn't define a :meth:test_step, this won't be called.

Examples:

With a single dataloader:

.. code-block:: python

def test_epoch_end(self, outputs):
    # do something with the outputs of all test batches
    all_test_preds = test_step_outputs.predictions

    some_result = calc_all_results(all_test_preds)
    self.log(some_result)

With multiple dataloaders, outputs will be a list of lists. The outer list contains one entry per dataloader, while the inner list contains the individual outputs of each test step for that dataloader.

.. code-block:: python

def test_epoch_end(self, outputs):
    final_value = 0
    for dataloader_outputs in outputs:
        for test_step_out in dataloader_outputs:
            # do something
            final_value += test_step_out

    self.log("final_metric", final_value)
Source code in zamba/models/efficientnet_models.py
def test_epoch_end(self, outputs: List[Dict[str, np.ndarray]]):
    y_true, y_pred, y_proba = self.aggregate_step_outputs(outputs)
    self.compute_and_log_metrics(y_true, y_pred, y_proba, subset="test")
test_step(self, batch, batch_idx) inherited

Operates on a single batch of data from the test set. In this step you'd normally generate examples or calculate anything of interest such as accuracy.

.. code-block:: python

# the pseudocode for these calls
test_outs = []
for test_batch in test_data:
    out = test_step(test_batch)
    test_outs.append(out)
test_epoch_end(test_outs)

Parameters:

Name Type Description Default
batch

class:~torch.Tensor | (:class:~torch.Tensor, ...) | [:class:~torch.Tensor, ...]): The output of your :class:~torch.utils.data.DataLoader. A tensor, tuple or list.

required
batch_idx int

The index of this batch.

required
dataloader_idx int

The index of the dataloader that produced this batch (only if multiple test dataloaders used).

required

Returns:

Type Description

Any of.

  • Any object or value
  • None - Testing will skip to the next batch

.. code-block:: python

# if you have one test dataloader:
def test_step(self, batch, batch_idx):
    ...


# if you have multiple test dataloaders:
def test_step(self, batch, batch_idx, dataloader_idx):
    ...

Examples::

# CASE 1: A single test dataset
def test_step(self, batch, batch_idx):
    x, y = batch

    # implement your own
    out = self(x)
    loss = self.loss(out, y)

    # log 6 example images
    # or generated text... or whatever
    sample_imgs = x[:6]
    grid = torchvision.utils.make_grid(sample_imgs)
    self.logger.experiment.add_image('example_images', grid, 0)

    # calculate acc
    labels_hat = torch.argmax(out, dim=1)
    test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)

    # log the outputs!
    self.log_dict({'test_loss': loss, 'test_acc': test_acc})

If you pass in multiple test dataloaders, :meth:test_step will have an additional argument.

.. code-block:: python

# CASE 2: multiple test dataloaders
def test_step(self, batch, batch_idx, dataloader_idx):
    # dataloader_idx tells you which dataset this is.
    ...

!!! note If you don't need to test you don't need to implement this method.

!!! note When the :meth:test_step is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of the test epoch, the model goes back to training mode and gradients are enabled.

Source code in zamba/models/efficientnet_models.py
def test_step(self, batch, batch_idx):
    return self.validation_step(batch, batch_idx)
test_step_end(self, *args, **kwargs) -> Union[torch.Tensor, Dict[str, Any]] inherited

Use this when testing with dp or ddp2 because :meth:test_step will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.

!!! note If you later switch to ddp or some other mode, this will still be called so that you don't have to change your code.

.. code-block:: python

# pseudocode
sub_batches = split_batches_for_dp(batch)
batch_parts_outputs = [test_step(sub_batch) for sub_batch in sub_batches]
test_step_end(batch_parts_outputs)

Parameters:

Name Type Description Default
batch_parts_outputs

What you return in :meth:test_step for each batch part.

required

Returns:

Type Description
Union[torch.Tensor, Dict[str, Any]]

None or anything

.. code-block:: python

# WITHOUT test_step_end
# if used in DP or DDP2, this batch is 1/num_gpus large
def test_step(self, batch, batch_idx):
    # batch is 1/num_gpus big
    x, y = batch

    out = self(x)
    loss = self.softmax(out)
    self.log("test_loss", loss)


# --------------
# with test_step_end to do softmax over the full batch
def test_step(self, batch, batch_idx):
    # batch is 1/num_gpus big
    x, y = batch

    out = self.encoder(x)
    return out


def test_step_end(self, output_results):
    # this out is now the full size of the batch
    all_test_step_outs = output_results.out
    loss = nce_loss(all_test_step_outs)
    self.log("test_loss", loss)

See Also: See the :ref:advanced/multi_gpu:Multi-GPU training guide for more details.

Source code in zamba/models/efficientnet_models.py
def test_step_end(self, *args, **kwargs) -> Optional[STEP_OUTPUT]:
    """Use this when testing with dp or ddp2 because :meth:`test_step` will operate on only part of the batch.
    However, this is still optional and only needed for things like softmax or NCE loss.

    Note:
        If you later switch to ddp or some other mode, this will still be called
        so that you don't have to change your code.

    .. code-block:: python

        # pseudocode
        sub_batches = split_batches_for_dp(batch)
        batch_parts_outputs = [test_step(sub_batch) for sub_batch in sub_batches]
        test_step_end(batch_parts_outputs)

    Args:
        batch_parts_outputs: What you return in :meth:`test_step` for each batch part.

    Return:
        None or anything

    .. code-block:: python

        # WITHOUT test_step_end
        # if used in DP or DDP2, this batch is 1/num_gpus large
        def test_step(self, batch, batch_idx):
            # batch is 1/num_gpus big
            x, y = batch

            out = self(x)
            loss = self.softmax(out)
            self.log("test_loss", loss)


        # --------------
        # with test_step_end to do softmax over the full batch
        def test_step(self, batch, batch_idx):
            # batch is 1/num_gpus big
            x, y = batch

            out = self.encoder(x)
            return out


        def test_step_end(self, output_results):
            # this out is now the full size of the batch
            all_test_step_outs = output_results.out
            loss = nce_loss(all_test_step_outs)
            self.log("test_loss", loss)

    See Also:
        See the :ref:`advanced/multi_gpu:Multi-GPU training` guide for more details.
    """
to(self, *args: Any, **kwargs: Any) -> DeviceDtypeModuleMixin inherited

Moves and/or casts the parameters and buffers.

This can be called as .. function:: to(device=None, dtype=None, non_blocking=False) .. function:: to(dtype, non_blocking=False) .. function:: to(tensor, non_blocking=False) Its signature is similar to :meth:torch.Tensor.to, but only accepts floating point desired :attr:dtype s. In addition, this method will only cast the floating point parameters and buffers to :attr:dtype (if given). The integral parameters and buffers will be moved :attr:device, if that is given, but with dtypes unchanged. When :attr:non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices. See below for examples.

!!! note This method modifies the module in-place.

Parameters:

Name Type Description Default
device

the desired device of the parameters and buffers in this module

required
dtype

the desired floating point type of the floating point parameters and buffers in this module

required
tensor

Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module

required

Returns:

Type Description
Module

self

Example:: >>> class ExampleModule(DeviceDtypeModuleMixin): ... def init(self, weight: torch.Tensor): ... super().init() ... self.register_buffer('weight', weight) >>> _ = torch.manual_seed(0) >>> module = ExampleModule(torch.rand(3, 4)) >>> module.weight #doctest: +ELLIPSIS tensor([[...]]) >>> module.to(torch.double) ExampleModule() >>> module.weight #doctest: +ELLIPSIS tensor([[...]], dtype=torch.float64) >>> cpu = torch.device('cpu') >>> module.to(cpu, dtype=torch.half, non_blocking=True) ExampleModule() >>> module.weight #doctest: +ELLIPSIS tensor([[...]], dtype=torch.float16) >>> module.to(cpu) ExampleModule() >>> module.weight #doctest: +ELLIPSIS tensor([[...]], dtype=torch.float16) >>> module.device device(type='cpu') >>> module.dtype torch.float16

Source code in zamba/models/efficientnet_models.py
def to(self, *args: Any, **kwargs: Any) -> "DeviceDtypeModuleMixin":
    """Moves and/or casts the parameters and buffers.

    This can be called as
    .. function:: to(device=None, dtype=None, non_blocking=False)
    .. function:: to(dtype, non_blocking=False)
    .. function:: to(tensor, non_blocking=False)
    Its signature is similar to :meth:`torch.Tensor.to`, but only accepts
    floating point desired :attr:`dtype` s. In addition, this method will
    only cast the floating point parameters and buffers to :attr:`dtype`
    (if given). The integral parameters and buffers will be moved
    :attr:`device`, if that is given, but with dtypes unchanged. When
    :attr:`non_blocking` is set, it tries to convert/move asynchronously
    with respect to the host if possible, e.g., moving CPU Tensors with
    pinned memory to CUDA devices.
    See below for examples.

    Note:
        This method modifies the module in-place.

    Args:
        device: the desired device of the parameters
            and buffers in this module
        dtype: the desired floating point type of
            the floating point parameters and buffers in this module
        tensor: Tensor whose dtype and device are the desired
            dtype and device for all parameters and buffers in this module

    Returns:
        Module: self

    Example::
        >>> class ExampleModule(DeviceDtypeModuleMixin):
        ...     def __init__(self, weight: torch.Tensor):
        ...         super().__init__()
        ...         self.register_buffer('weight', weight)
        >>> _ = torch.manual_seed(0)
        >>> module = ExampleModule(torch.rand(3, 4))
        >>> module.weight #doctest: +ELLIPSIS
        tensor([[...]])
        >>> module.to(torch.double)
        ExampleModule()
        >>> module.weight #doctest: +ELLIPSIS
        tensor([[...]], dtype=torch.float64)
        >>> cpu = torch.device('cpu')
        >>> module.to(cpu, dtype=torch.half, non_blocking=True)
        ExampleModule()
        >>> module.weight #doctest: +ELLIPSIS
        tensor([[...]], dtype=torch.float16)
        >>> module.to(cpu)
        ExampleModule()
        >>> module.weight #doctest: +ELLIPSIS
        tensor([[...]], dtype=torch.float16)
        >>> module.device
        device(type='cpu')
        >>> module.dtype
        torch.float16
    """
    # there is diff nb vars in PT 1.5
    out = torch._C._nn._parse_to(*args, **kwargs)
    self.__update_properties(device=out[0], dtype=out[1])
    return super().to(*args, **kwargs)
to_disk(self, path: PathLike) inherited
Source code in zamba/models/efficientnet_models.py
def to_disk(self, path: os.PathLike):
    checkpoint = {
        "state_dict": self.state_dict(),
        "hyper_parameters": self.hparams,
    }
    torch.save(checkpoint, path)
to_empty(self: ~T, *, device: Union[str, torch.device]) -> ~T inherited

Moves the parameters and buffers to the specified device without copying storage.

Parameters:

Name Type Description Default
device

class:torch.device): The desired device of the parameters and buffers in this module.

required

Returns:

Type Description
Module

self

Source code in zamba/models/efficientnet_models.py
def to_empty(self: T, *, device: Union[str, device]) -> T:
    r"""Moves the parameters and buffers to the specified device without copying storage.

    Args:
        device (:class:`torch.device`): The desired device of the parameters
            and buffers in this module.

    Returns:
        Module: self
    """
    return self._apply(lambda t: torch.empty_like(t, device=device))
to_onnx(self, file_path: Union[str, pathlib.Path], input_sample: Optional[Any] = None, **kwargs) inherited

Saves the model in ONNX format.

Parameters:

Name Type Description Default
file_path Union[str, pathlib.Path]

The path of the file the onnx model should be saved to.

required
input_sample Optional[Any]

An input for tracing. Default: None (Use self.example_input_array)

None
**kwargs

Will be passed to torch.onnx.export function.

{}

Examples:

>>> class SimpleModel(LightningModule):
...     def __init__(self):
...         super().__init__()
...         self.l1 = torch.nn.Linear(in_features=64, out_features=4)
...
...     def forward(self, x):
...         return torch.relu(self.l1(x.view(x.size(0), -1)))
>>> with tempfile.NamedTemporaryFile(suffix='.onnx', delete=False) as tmpfile:
...     model = SimpleModel()
...     input_sample = torch.randn((1, 64))
...     model.to_onnx(tmpfile.name, input_sample, export_params=True)
...     os.path.isfile(tmpfile.name)
True
Source code in zamba/models/efficientnet_models.py
@torch.no_grad()
def to_onnx(self, file_path: Union[str, Path], input_sample: Optional[Any] = None, **kwargs):
    """Saves the model in ONNX format.

    Args:
        file_path: The path of the file the onnx model should be saved to.
        input_sample: An input for tracing. Default: None (Use self.example_input_array)
        **kwargs: Will be passed to torch.onnx.export function.

    Example:
        >>> class SimpleModel(LightningModule):
        ...     def __init__(self):
        ...         super().__init__()
        ...         self.l1 = torch.nn.Linear(in_features=64, out_features=4)
        ...
        ...     def forward(self, x):
        ...         return torch.relu(self.l1(x.view(x.size(0), -1)))

        >>> with tempfile.NamedTemporaryFile(suffix='.onnx', delete=False) as tmpfile:
        ...     model = SimpleModel()
        ...     input_sample = torch.randn((1, 64))
        ...     model.to_onnx(tmpfile.name, input_sample, export_params=True)
        ...     os.path.isfile(tmpfile.name)
        True
    """
    mode = self.training

    if input_sample is None:
        if self.example_input_array is None:
            raise ValueError(
                "Could not export to ONNX since neither `input_sample` nor"
                " `model.example_input_array` attribute is set."
            )
        input_sample = self.example_input_array

    input_sample = self._apply_batch_transfer_handler(input_sample)

    if not _TORCH_GREATER_EQUAL_1_10 and "example_outputs" not in kwargs:
        self.eval()
        if isinstance(input_sample, Tuple):
            kwargs["example_outputs"] = self(*input_sample)
        else:
            kwargs["example_outputs"] = self(input_sample)

    torch.onnx.export(self, input_sample, file_path, **kwargs)
    self.train(mode)
to_torchscript(self, file_path: Union[str, pathlib.Path] = None, method: Optional[str] = 'script', example_inputs: Optional[Any] = None, **kwargs) -> Union[torch._C.ScriptModule, Dict[str, torch._C.ScriptModule]] inherited

By default compiles the whole model to a :class:~torch.jit.ScriptModule. If you want to use tracing, please provided the argument method='trace' and make sure that either the example_inputs argument is provided, or the model has :attr:example_input_array set. If you would like to customize the modules that are scripted you should override this method. In case you want to return multiple modules, we recommend using a dictionary.

Parameters:

Name Type Description Default
file_path Union[str, pathlib.Path]

Path where to save the torchscript. Default: None (no file saved).

None
method Optional[str]

Whether to use TorchScript's script or trace method. Default: 'script'

'script'
example_inputs Optional[Any]

An input to be used to do tracing when method is set to 'trace'. Default: None (uses :attr:example_input_array)

None
**kwargs

Additional arguments that will be passed to the :func:torch.jit.script or :func:torch.jit.trace function.

{}

!!! note - Requires the implementation of the :meth:~pytorch_lightning.core.lightning.LightningModule.forward method. - The exported script will be set to evaluation mode. - It is recommended that you install the latest supported version of PyTorch to use this feature without limitations. See also the :mod:torch.jit documentation for supported features.

Examples:

>>> class SimpleModel(LightningModule):
...     def __init__(self):
...         super().__init__()
...         self.l1 = torch.nn.Linear(in_features=64, out_features=4)
...
...     def forward(self, x):
...         return torch.relu(self.l1(x.view(x.size(0), -1)))
...
>>> model = SimpleModel()
>>> torch.jit.save(model.to_torchscript(), "model.pt")
>>> os.path.isfile("model.pt")
>>> torch.jit.save(model.to_torchscript(file_path="model_trace.pt", method='trace',
...                                     example_inputs=torch.randn(1, 64)))
>>> os.path.isfile("model_trace.pt")
True

Returns:

Type Description
Union[torch._C.ScriptModule, Dict[str, torch._C.ScriptModule]]

This LightningModule as a torchscript, regardless of whether file_path is defined or not.

Source code in zamba/models/efficientnet_models.py
@torch.no_grad()
def to_torchscript(
    self,
    file_path: Optional[Union[str, Path]] = None,
    method: Optional[str] = "script",
    example_inputs: Optional[Any] = None,
    **kwargs,
) -> Union[ScriptModule, Dict[str, ScriptModule]]:
    """By default compiles the whole model to a :class:`~torch.jit.ScriptModule`. If you want to use tracing,
    please provided the argument ``method='trace'`` and make sure that either the `example_inputs` argument is
    provided, or the model has :attr:`example_input_array` set. If you would like to customize the modules that
    are scripted you should override this method. In case you want to return multiple modules, we recommend
    using a dictionary.

    Args:
        file_path: Path where to save the torchscript. Default: None (no file saved).
        method: Whether to use TorchScript's script or trace method. Default: 'script'
        example_inputs: An input to be used to do tracing when method is set to 'trace'.
          Default: None (uses :attr:`example_input_array`)
        **kwargs: Additional arguments that will be passed to the :func:`torch.jit.script` or
          :func:`torch.jit.trace` function.

    Note:
        - Requires the implementation of the
          :meth:`~pytorch_lightning.core.lightning.LightningModule.forward` method.
        - The exported script will be set to evaluation mode.
        - It is recommended that you install the latest supported version of PyTorch
          to use this feature without limitations. See also the :mod:`torch.jit`
          documentation for supported features.

    Example:
        >>> class SimpleModel(LightningModule):
        ...     def __init__(self):
        ...         super().__init__()
        ...         self.l1 = torch.nn.Linear(in_features=64, out_features=4)
        ...
        ...     def forward(self, x):
        ...         return torch.relu(self.l1(x.view(x.size(0), -1)))
        ...
        >>> model = SimpleModel()
        >>> torch.jit.save(model.to_torchscript(), "model.pt")  # doctest: +SKIP
        >>> os.path.isfile("model.pt")  # doctest: +SKIP
        >>> torch.jit.save(model.to_torchscript(file_path="model_trace.pt", method='trace', # doctest: +SKIP
        ...                                     example_inputs=torch.randn(1, 64)))  # doctest: +SKIP
        >>> os.path.isfile("model_trace.pt")  # doctest: +SKIP
        True

    Return:
        This LightningModule as a torchscript, regardless of whether `file_path` is
        defined or not.
    """
    mode = self.training

    self._running_torchscript = True

    if method == "script":
        torchscript_module = torch.jit.script(self.eval(), **kwargs)
    elif method == "trace":
        # if no example inputs are provided, try to see if model has example_input_array set
        if example_inputs is None:
            if self.example_input_array is None:
                raise ValueError(
                    "Choosing method=`trace` requires either `example_inputs`"
                    " or `model.example_input_array` to be defined."
                )
            example_inputs = self.example_input_array

        # automatically send example inputs to the right device and use trace
        example_inputs = self._apply_batch_transfer_handler(example_inputs)
        torchscript_module = torch.jit.trace(func=self.eval(), example_inputs=example_inputs, **kwargs)
    else:
        raise ValueError(f"The 'method' parameter only supports 'script' or 'trace', but value given was: {method}")

    self.train(mode)

    if file_path is not None:
        fs = get_filesystem(file_path)
        with fs.open(file_path, "wb") as f:
            torch.jit.save(torchscript_module, f)

    self._running_torchscript = False

    return torchscript_module
toggle_optimizer(self, optimizer: Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer], optimizer_idx: int) -> None inherited

Makes sure only the gradients of the current optimizer's parameters are calculated in the training step to prevent dangling gradients in multiple-optimizer setup.

This is only called automatically when automatic optimization is enabled and multiple optimizers are used. It works with :meth:untoggle_optimizer to make sure param_requires_grad_state is properly reset.

Parameters:

Name Type Description Default
optimizer Union[torch.optim.optimizer.Optimizer, pytorch_lightning.core.optimizer.LightningOptimizer]

The optimizer to toggle.

required
optimizer_idx int

The index of the optimizer to toggle.

required
Source code in zamba/models/efficientnet_models.py
def toggle_optimizer(self, optimizer: Union[Optimizer, LightningOptimizer], optimizer_idx: int) -> None:
    """Makes sure only the gradients of the current optimizer's parameters are calculated in the training step
    to prevent dangling gradients in multiple-optimizer setup.

    This is only called automatically when automatic optimization is enabled and multiple optimizers are used.
    It works with :meth:`untoggle_optimizer` to make sure ``param_requires_grad_state`` is properly reset.

    Args:
        optimizer: The optimizer to toggle.
        optimizer_idx: The index of the optimizer to toggle.
    """
    # Iterate over all optimizer parameters to preserve their `requires_grad` information
    # in case these are pre-defined during `configure_optimizers`
    param_requires_grad_state = {}
    for opt in self.optimizers(use_pl_optimizer=False):
        for group in opt.param_groups:
            for param in group["params"]:
                # If a param already appear in param_requires_grad_state, continue
                if param in param_requires_grad_state:
                    continue
                param_requires_grad_state[param] = param.requires_grad
                param.requires_grad = False

    # Then iterate over the current optimizer's parameters and set its `requires_grad`
    # properties accordingly
    for group in optimizer.param_groups:
        for param in group["params"]:
            param.requires_grad = param_requires_grad_state[param]
    self._param_requires_grad_state = param_requires_grad_state
train(self: ~T, mode: bool = True) -> ~T inherited

Sets the module in training mode.

This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. :class:Dropout, :class:BatchNorm, etc.

Parameters:

Name Type Description Default
mode bool

whether to set training mode (True) or evaluation mode (False). Default: True.

True

Returns:

Type Description
Module

self

Source code in zamba/models/efficientnet_models.py
def train(self: T, mode: bool = True) -> T:
    r"""Sets the module in training mode.

    This has any effect only on certain modules. See documentations of
    particular modules for details of their behaviors in training/evaluation
    mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,
    etc.

    Args:
        mode (bool): whether to set training mode (``True``) or evaluation
                     mode (``False``). Default: ``True``.

    Returns:
        Module: self
    """
    if not isinstance(mode, bool):
        raise ValueError("training mode is expected to be boolean")
    self.training = mode
    for module in self.children():
        module.train(mode)
    return self
train_dataloader(self) -> Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader], Sequence[Sequence[torch.utils.data.dataloader.DataLoader]], Sequence[Dict[str, torch.utils.data.dataloader.DataLoader]], Dict[str, torch.utils.data.dataloader.DataLoader], Dict[str, Dict[str, torch.utils.data.dataloader.DataLoader]], Dict[str, Sequence[torch.utils.data.dataloader.DataLoader]]] inherited

Implement one or more PyTorch DataLoaders for training.

Returns:

Type Description
A collection of

class:torch.utils.data.DataLoader specifying training samples. In the case of multiple dataloaders, please see this :ref:page <multiple-training-dataloaders>.

The dataloader you return will not be reloaded unless you set :paramref:~pytorch_lightning.trainer.Trainer.reload_dataloaders_every_n_epochs to a positive integer.

For data processing use the following pattern:

- download in :meth:`prepare_data`
- process and split in :meth:`setup`

However, the above are only necessary for distributed processing.

.. warning:: do not assign state in prepare_data

  • :meth:~pytorch_lightning.trainer.Trainer.fit
  • ...
  • :meth:prepare_data
  • :meth:setup
  • :meth:train_dataloader

!!! note Lightning adds the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.

Example::

# single dataloader
def train_dataloader(self):
    transform = transforms.Compose([transforms.ToTensor(),
                                    transforms.Normalize((0.5,), (1.0,))])
    dataset = MNIST(root='/path/to/mnist/', train=True, transform=transform,
                    download=True)
    loader = torch.utils.data.DataLoader(
        dataset=dataset,
        batch_size=self.batch_size,
        shuffle=True
    )
    return loader

# multiple dataloaders, return as list
def train_dataloader(self):
    mnist = MNIST(...)
    cifar = CIFAR(...)
    mnist_loader = torch.utils.data.DataLoader(
        dataset=mnist, batch_size=self.batch_size, shuffle=True
    )
    cifar_loader = torch.utils.data.DataLoader(
        dataset=cifar, batch_size=self.batch_size, shuffle=True
    )
    # each batch will be a list of tensors: [batch_mnist, batch_cifar]
    return [mnist_loader, cifar_loader]

# multiple dataloader, return as dict
def train_dataloader(self):
    mnist = MNIST(...)
    cifar = CIFAR(...)
    mnist_loader = torch.utils.data.DataLoader(
        dataset=mnist, batch_size=self.batch_size, shuffle=True
    )
    cifar_loader = torch.utils.data.DataLoader(
        dataset=cifar, batch_size=self.batch_size, shuffle=True
    )
    # each batch will be a dict of tensors: {'mnist': batch_mnist, 'cifar': batch_cifar}
    return {'mnist': mnist_loader, 'cifar': cifar_loader}
Source code in zamba/models/efficientnet_models.py
def train_dataloader(self) -> TRAIN_DATALOADERS:
    """Implement one or more PyTorch DataLoaders for training.

    Return:
        A collection of :class:`torch.utils.data.DataLoader` specifying training samples.
        In the case of multiple dataloaders, please see this :ref:`page <multiple-training-dataloaders>`.

    The dataloader you return will not be reloaded unless you set
    :paramref:`~pytorch_lightning.trainer.Trainer.reload_dataloaders_every_n_epochs` to
    a positive integer.

    For data processing use the following pattern:

        - download in :meth:`prepare_data`
        - process and split in :meth:`setup`

    However, the above are only necessary for distributed processing.

    .. warning:: do not assign state in prepare_data

    - :meth:`~pytorch_lightning.trainer.Trainer.fit`
    - ...
    - :meth:`prepare_data`
    - :meth:`setup`
    - :meth:`train_dataloader`

    Note:
        Lightning adds the correct sampler for distributed and arbitrary hardware.
        There is no need to set it yourself.

    Example::

        # single dataloader
        def train_dataloader(self):
            transform = transforms.Compose([transforms.ToTensor(),
                                            transforms.Normalize((0.5,), (1.0,))])
            dataset = MNIST(root='/path/to/mnist/', train=True, transform=transform,
                            download=True)
            loader = torch.utils.data.DataLoader(
                dataset=dataset,
                batch_size=self.batch_size,
                shuffle=True
            )
            return loader

        # multiple dataloaders, return as list
        def train_dataloader(self):
            mnist = MNIST(...)
            cifar = CIFAR(...)
            mnist_loader = torch.utils.data.DataLoader(
                dataset=mnist, batch_size=self.batch_size, shuffle=True
            )
            cifar_loader = torch.utils.data.DataLoader(
                dataset=cifar, batch_size=self.batch_size, shuffle=True
            )
            # each batch will be a list of tensors: [batch_mnist, batch_cifar]
            return [mnist_loader, cifar_loader]

        # multiple dataloader, return as dict
        def train_dataloader(self):
            mnist = MNIST(...)
            cifar = CIFAR(...)
            mnist_loader = torch.utils.data.DataLoader(
                dataset=mnist, batch_size=self.batch_size, shuffle=True
            )
            cifar_loader = torch.utils.data.DataLoader(
                dataset=cifar, batch_size=self.batch_size, shuffle=True
            )
            # each batch will be a dict of tensors: {'mnist': batch_mnist, 'cifar': batch_cifar}
            return {'mnist': mnist_loader, 'cifar': cifar_loader}
    """
    raise NotImplementedError("`train_dataloader` must be implemented to be used with the Lightning Trainer")
training_epoch_end(self, outputs: List[Union[torch.Tensor, Dict[str, Any]]]) -> None inherited

Called at the end of the training epoch with the outputs of all training steps. Use this in case you need to do something with all the outputs returned by :meth:training_step.

.. code-block:: python

# the pseudocode for these calls
train_outs = []
for train_batch in train_data:
    out = training_step(train_batch)
    train_outs.append(out)
training_epoch_end(train_outs)

Parameters:

Name Type Description Default
outputs List[Union[torch.Tensor, Dict[str, Any]]]

List of outputs you defined in :meth:training_step. If there are multiple optimizers, it is a list containing a list of outputs for each optimizer. If using truncated_bptt_steps > 1, each element is a list of outputs corresponding to the outputs of each processed split batch.

required

Returns:

Type Description
None

None

!!! note If this method is not overridden, this won't be called.

.. code-block:: python

def training_epoch_end(self, training_step_outputs):
    # do something with all training_step outputs
    for out in training_step_outputs:
        ...
Source code in zamba/models/efficientnet_models.py
def training_epoch_end(self, outputs: EPOCH_OUTPUT) -> None:
    """Called at the end of the training epoch with the outputs of all training steps. Use this in case you
    need to do something with all the outputs returned by :meth:`training_step`.

    .. code-block:: python

        # the pseudocode for these calls
        train_outs = []
        for train_batch in train_data:
            out = training_step(train_batch)
            train_outs.append(out)
        training_epoch_end(train_outs)

    Args:
        outputs: List of outputs you defined in :meth:`training_step`.
            If there are multiple optimizers, it is a list containing a list of outputs for each optimizer.
            If using ``truncated_bptt_steps > 1``, each element is a list of outputs corresponding to the outputs
            of each processed split batch.

    Return:
        None

    Note:
        If this method is not overridden, this won't be called.

    .. code-block:: python

        def training_epoch_end(self, training_step_outputs):
            # do something with all training_step outputs
            for out in training_step_outputs:
                ...
    """
training_step(self, batch, batch_idx) inherited

Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.

Parameters:

Name Type Description Default
batch

class:~torch.Tensor | (:class:~torch.Tensor, ...) | [:class:~torch.Tensor, ...]): The output of your :class:~torch.utils.data.DataLoader. A tensor, tuple or list.

required
batch_idx ``int``

Integer displaying index of this batch

required
optimizer_idx ``int``

When using multiple optimizers, this argument will also be present.

required
hiddens ``Any``

Passed in if :paramref:~pytorch_lightning.core.lightning.LightningModule.truncated_bptt_steps > 0.

required

Returns:

Type Description
Any of. -

class:~torch.Tensor - The loss tensor - dict - A dictionary. Can include any keys, but must include the key 'loss' - None - Training will skip to the next batch. This is only for automatic optimization. This is not supported for multi-GPU, TPU, IPU, or DeepSpeed.

In this step you'd normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.

Example::

def training_step(self, batch, batch_idx):
    x, y, z = batch
    out = self.encoder(x)
    loss = self.loss(out, x)
    return loss

If you define multiple optimizers, this step will be called with an additional optimizer_idx parameter.

.. code-block:: python

# Multiple optimizers (e.g.: GANs)
def training_step(self, batch, batch_idx, optimizer_idx):
    if optimizer_idx == 0:
        # do training_step with encoder
        ...
    if optimizer_idx == 1:
        # do training_step with decoder
        ...

If you add truncated back propagation through time you will also get an additional argument with the hidden states of the previous step.

.. code-block:: python

# Truncated back-propagation through time
def training_step(self, batch, batch_idx, hiddens):
    # hiddens are the hidden states from the previous truncated backprop step
    out, hiddens = self.lstm(data, hiddens)
    loss = ...
    return {"loss": loss, "hiddens": hiddens}

!!! note The loss value shown in the progress bar is smoothed (averaged) over the last values, so it differs from the actual loss returned in train/validation step.

Source code in zamba/models/efficientnet_models.py
def training_step(self, batch, batch_idx):
    x, y = batch
    y_hat = self(x)
    loss = F.binary_cross_entropy_with_logits(y_hat, y)
    self.log("train_loss", loss.detach())
    return loss
training_step_end(self, *args, **kwargs) -> Union[torch.Tensor, Dict[str, Any]] inherited

Use this when training with dp or ddp2 because :meth:training_step will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.

!!! note If you later switch to ddp or some other mode, this will still be called so that you don't have to change your code

.. code-block:: python

# pseudocode
sub_batches = split_batches_for_dp(batch)
batch_parts_outputs = [training_step(sub_batch) for sub_batch in sub_batches]
training_step_end(batch_parts_outputs)

Parameters:

Name Type Description Default
batch_parts_outputs

What you return in training_step for each batch part.

required

Returns:

Type Description
Union[torch.Tensor, Dict[str, Any]]

Anything

When using dp/ddp2 distributed backends, only a portion of the batch is inside the training_step:

.. code-block:: python

def training_step(self, batch, batch_idx):
    # batch is 1/num_gpus big
    x, y = batch

    out = self(x)

    # softmax uses only a portion of the batch in the denominator
    loss = self.softmax(out)
    loss = nce_loss(loss)
    return loss

If you wish to do something with all the parts of the batch, then use this method to do it:

.. code-block:: python

def training_step(self, batch, batch_idx):
    # batch is 1/num_gpus big
    x, y = batch

    out = self.encoder(x)
    return {"pred": out}


def training_step_end(self, training_step_outputs):
    gpu_0_pred = training_step_outputs[0]["pred"]
    gpu_1_pred = training_step_outputs[1]["pred"]
    gpu_n_pred = training_step_outputs[n]["pred"]

    # this softmax now uses the full batch
    loss = nce_loss([gpu_0_pred, gpu_1_pred, gpu_n_pred])
    return loss

See Also: See the :ref:advanced/multi_gpu:Multi-GPU training guide for more details.

Source code in zamba/models/efficientnet_models.py
def training_step_end(self, *args, **kwargs) -> STEP_OUTPUT:
    """Use this when training with dp or ddp2 because :meth:`training_step` will operate on only part of the
    batch. However, this is still optional and only needed for things like softmax or NCE loss.

    Note:
        If you later switch to ddp or some other mode, this will still be called
        so that you don't have to change your code

    .. code-block:: python

        # pseudocode
        sub_batches = split_batches_for_dp(batch)
        batch_parts_outputs = [training_step(sub_batch) for sub_batch in sub_batches]
        training_step_end(batch_parts_outputs)

    Args:
        batch_parts_outputs: What you return in `training_step` for each batch part.

    Return:
        Anything

    When using dp/ddp2 distributed backends, only a portion of the batch is inside the training_step:

    .. code-block:: python

        def training_step(self, batch, batch_idx):
            # batch is 1/num_gpus big
            x, y = batch

            out = self(x)

            # softmax uses only a portion of the batch in the denominator
            loss = self.softmax(out)
            loss = nce_loss(loss)
            return loss

    If you wish to do something with all the parts of the batch, then use this method to do it:

    .. code-block:: python

        def training_step(self, batch, batch_idx):
            # batch is 1/num_gpus big
            x, y = batch

            out = self.encoder(x)
            return {"pred": out}


        def training_step_end(self, training_step_outputs):
            gpu_0_pred = training_step_outputs[0]["pred"]
            gpu_1_pred = training_step_outputs[1]["pred"]
            gpu_n_pred = training_step_outputs[n]["pred"]

            # this softmax now uses the full batch
            loss = nce_loss([gpu_0_pred, gpu_1_pred, gpu_n_pred])
            return loss

    See Also:
        See the :ref:`advanced/multi_gpu:Multi-GPU training` guide for more details.
    """
transfer_batch_to_device(self, batch: Any, device: device, dataloader_idx: int) -> Any inherited

Override this hook if your :class:~torch.utils.data.DataLoader returns tensors wrapped in a custom data structure.

The data types listed below (and any arbitrary nesting of them) are supported out of the box:

  • :class:torch.Tensor or anything that implements .to(...)
  • :class:list
  • :class:dict
  • :class:tuple
  • :class:torchtext.data.batch.Batch

For anything else, you need to define how the data is moved to the target device (CPU, GPU, TPU, ...).

!!! note This hook should only transfer the data and not modify it, nor should it move the data to any other device than the one passed in as argument (unless you know what you are doing). To check the current state of execution of this hook you can use self.trainer.training/testing/validating/predicting so that you can add different logic as per your requirement.

!!! note This hook only runs on single GPU training and DDP (no data-parallel). Data-Parallel support will come in near future.

Parameters:

Name Type Description Default
batch Any

A batch of data that needs to be transferred to a new device.

required
device device

The target device as defined in PyTorch.

required
dataloader_idx int

The index of the dataloader to which the batch belongs.

required

Returns:

Type Description
Any

A reference to the data on the new device.

Example::

def transfer_batch_to_device(self, batch, device, dataloader_idx):
    if isinstance(batch, CustomBatch):
        # move all tensors in your custom data structure to the device
        batch.samples = batch.samples.to(device)
        batch.targets = batch.targets.to(device)
    elif dataloader_idx == 0:
        # skip device transfer for the first dataloader or anything you wish
        pass
    !!! else
        batch = super().transfer_batch_to_device(data, device)
    return batch

See Also: - :meth:move_data_to_device - :meth:apply_to_collection

Source code in zamba/models/efficientnet_models.py
def transfer_batch_to_device(self, batch: Any, device: torch.device, dataloader_idx: int) -> Any:
    """Override this hook if your :class:`~torch.utils.data.DataLoader` returns tensors wrapped in a custom
    data structure.

    The data types listed below (and any arbitrary nesting of them) are supported out of the box:

    - :class:`torch.Tensor` or anything that implements `.to(...)`
    - :class:`list`
    - :class:`dict`
    - :class:`tuple`
    - :class:`torchtext.data.batch.Batch`

    For anything else, you need to define how the data is moved to the target device (CPU, GPU, TPU, ...).

    Note:
        This hook should only transfer the data and not modify it, nor should it move the data to
        any other device than the one passed in as argument (unless you know what you are doing).
        To check the current state of execution of this hook you can use
        ``self.trainer.training/testing/validating/predicting`` so that you can
        add different logic as per your requirement.

    Note:
        This hook only runs on single GPU training and DDP (no data-parallel).
        Data-Parallel support will come in near future.

    Args:
        batch: A batch of data that needs to be transferred to a new device.
        device: The target device as defined in PyTorch.
        dataloader_idx: The index of the dataloader to which the batch belongs.

    Returns:
        A reference to the data on the new device.

    Example::

        def transfer_batch_to_device(self, batch, device, dataloader_idx):
            if isinstance(batch, CustomBatch):
                # move all tensors in your custom data structure to the device
                batch.samples = batch.samples.to(device)
                batch.targets = batch.targets.to(device)
            elif dataloader_idx == 0:
                # skip device transfer for the first dataloader or anything you wish
                pass
            else:
                batch = super().transfer_batch_to_device(data, device)
            return batch

    Raises:
        MisconfigurationException:
            If using data-parallel, ``Trainer(strategy='dp')``.

    See Also:
        - :meth:`move_data_to_device`
        - :meth:`apply_to_collection`
    """
    return move_data_to_device(batch, device)
type(self, dst_type: Union[str, torch.dtype]) -> DeviceDtypeModuleMixin inherited

Casts all parameters and buffers to :attr:dst_type.

Parameters:

Name Type Description Default
dst_type type or string

the desired type

required

Returns:

Type Description
Module

self

Source code in zamba/models/efficientnet_models.py
def type(self, dst_type: Union[str, torch.dtype]) -> "DeviceDtypeModuleMixin":
    """Casts all parameters and buffers to :attr:`dst_type`.

    Arguments:
        dst_type (type or string): the desired type

    Returns:
        Module: self
    """
    self.__update_properties(dtype=dst_type)
    return super().type(dst_type=dst_type)
unfreeze(self) -> None inherited

Unfreeze all parameters for training.

.. code-block:: python

model = MyLightningModule(...)
model.unfreeze()
Source code in zamba/models/efficientnet_models.py
def unfreeze(self) -> None:
    """Unfreeze all parameters for training.

    .. code-block:: python

        model = MyLightningModule(...)
        model.unfreeze()
    """
    for param in self.parameters():
        param.requires_grad = True

    self.train()
untoggle_optimizer(self, optimizer_idx: int) -> None inherited

Resets the state of required gradients that were toggled with :meth:toggle_optimizer.

This is only called automatically when automatic optimization is enabled and multiple optimizers are used.

Parameters:

Name Type Description Default
optimizer_idx int

The index of the optimizer to untoggle.

required
Source code in zamba/models/efficientnet_models.py
def untoggle_optimizer(self, optimizer_idx: int) -> None:
    """Resets the state of required gradients that were toggled with :meth:`toggle_optimizer`.

    This is only called automatically when automatic optimization is enabled and multiple optimizers are used.

    Args:
        optimizer_idx: The index of the optimizer to untoggle.
    """
    for opt_idx, opt in enumerate(self.optimizers(use_pl_optimizer=False)):
        if optimizer_idx != opt_idx:
            for group in opt.param_groups:
                for param in group["params"]:
                    if param in self._param_requires_grad_state:
                        param.requires_grad = self._param_requires_grad_state[param]
    # save memory
    self._param_requires_grad_state = {}
val_dataloader(self) -> Union[torch.utils.data.dataloader.DataLoader, Sequence[torch.utils.data.dataloader.DataLoader]] inherited

Implement one or multiple PyTorch DataLoaders for validation.

The dataloader you return will not be reloaded unless you set :paramref:~pytorch_lightning.trainer.Trainer.reload_dataloaders_every_n_epochs to a positive integer.

It's recommended that all data downloads and preparation happen in :meth:prepare_data.

  • :meth:~pytorch_lightning.trainer.Trainer.fit
  • ...
  • :meth:prepare_data
  • :meth:train_dataloader
  • :meth:val_dataloader
  • :meth:test_dataloader

!!! note Lightning adds the correct sampler for distributed and arbitrary hardware There is no need to set it yourself.

Returns:

Type Description
A

class:torch.utils.data.DataLoader or a sequence of them specifying validation samples.

Examples::

def val_dataloader(self):
    transform = transforms.Compose([transforms.ToTensor(),
                                    transforms.Normalize((0.5,), (1.0,))])
    dataset = MNIST(root='/path/to/mnist/', train=False,
                    transform=transform, download=True)
    loader = torch.utils.data.DataLoader(
        dataset=dataset,
        batch_size=self.batch_size,
        shuffle=False
    )

    return loader

# can also return multiple dataloaders
def val_dataloader(self):
    return [loader_a, loader_b, ..., loader_n]

!!! note If you don't need a validation dataset and a :meth:validation_step, you don't need to implement this method.

!!! note In the case where you return multiple validation dataloaders, the :meth:validation_step will have an argument dataloader_idx which matches the order here.

Source code in zamba/models/efficientnet_models.py
def val_dataloader(self) -> EVAL_DATALOADERS:
    r"""
    Implement one or multiple PyTorch DataLoaders for validation.

    The dataloader you return will not be reloaded unless you set
    :paramref:`~pytorch_lightning.trainer.Trainer.reload_dataloaders_every_n_epochs` to
    a positive integer.

    It's recommended that all data downloads and preparation happen in :meth:`prepare_data`.

    - :meth:`~pytorch_lightning.trainer.Trainer.fit`
    - ...
    - :meth:`prepare_data`
    - :meth:`train_dataloader`
    - :meth:`val_dataloader`
    - :meth:`test_dataloader`

    Note:
        Lightning adds the correct sampler for distributed and arbitrary hardware
        There is no need to set it yourself.

    Return:
        A :class:`torch.utils.data.DataLoader` or a sequence of them specifying validation samples.

    Examples::

        def val_dataloader(self):
            transform = transforms.Compose([transforms.ToTensor(),
                                            transforms.Normalize((0.5,), (1.0,))])
            dataset = MNIST(root='/path/to/mnist/', train=False,
                            transform=transform, download=True)
            loader = torch.utils.data.DataLoader(
                dataset=dataset,
                batch_size=self.batch_size,
                shuffle=False
            )

            return loader

        # can also return multiple dataloaders
        def val_dataloader(self):
            return [loader_a, loader_b, ..., loader_n]

    Note:
        If you don't need a validation dataset and a :meth:`validation_step`, you don't need to
        implement this method.

    Note:
        In the case where you return multiple validation dataloaders, the :meth:`validation_step`
        will have an argument ``dataloader_idx`` which matches the order here.
    """
    raise NotImplementedError("`val_dataloader` must be implemented to be used with the Lightning Trainer")
validation_epoch_end(self, outputs: List[Dict[str, numpy.ndarray]]) inherited

Aggregates validation_step outputs to compute and log the validation macro F1 and top K metrics.

Parameters:

Name Type Description Default
outputs List[dict]

list of output dictionaries from each validation step containing y_pred and y_true.

required
Source code in zamba/models/efficientnet_models.py
def validation_epoch_end(self, outputs: List[Dict[str, np.ndarray]]):
    """Aggregates validation_step outputs to compute and log the validation macro F1 and top K
    metrics.

    Args:
        outputs (List[dict]): list of output dictionaries from each validation step
            containing y_pred and y_true.
    """
    y_true, y_pred, y_proba = self.aggregate_step_outputs(outputs)
    self.compute_and_log_metrics(y_true, y_pred, y_proba, subset="val")
validation_step(self, batch, batch_idx) inherited

Operates on a single batch of data from the validation set. In this step you'd might generate examples or calculate anything of interest like accuracy.

.. code-block:: python

# the pseudocode for these calls
val_outs = []
for val_batch in val_data:
    out = validation_step(val_batch)
    val_outs.append(out)
validation_epoch_end(val_outs)

Parameters:

Name Type Description Default
batch

class:~torch.Tensor | (:class:~torch.Tensor, ...) | [:class:~torch.Tensor, ...]): The output of your :class:~torch.utils.data.DataLoader. A tensor, tuple or list.

required
batch_idx int

The index of this batch

required
dataloader_idx int

The index of the dataloader that produced this batch (only if multiple val dataloaders used)

required

Returns:

Type Description
  • Any object or value
  • None - Validation will skip to the next batch

.. code-block:: python

# pseudocode of order
val_outs = []
for val_batch in val_data:
    out = validation_step(val_batch)
    if defined("validation_step_end"):
        out = validation_step_end(out)
    val_outs.append(out)
val_outs = validation_epoch_end(val_outs)

.. code-block:: python

# if you have one val dataloader:
def validation_step(self, batch, batch_idx):
    ...


# if you have multiple val dataloaders:
def validation_step(self, batch, batch_idx, dataloader_idx):
    ...

Examples::

# CASE 1: A single validation dataset
def validation_step(self, batch, batch_idx):
    x, y = batch

    # implement your own
    out = self(x)
    loss = self.loss(out, y)

    # log 6 example images
    # or generated text... or whatever
    sample_imgs = x[:6]
    grid = torchvision.utils.make_grid(sample_imgs)
    self.logger.experiment.add_image('example_images', grid, 0)

    # calculate acc
    labels_hat = torch.argmax(out, dim=1)
    val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)

    # log the outputs!
    self.log_dict({'val_loss': loss, 'val_acc': val_acc})

If you pass in multiple val dataloaders, :meth:validation_step will have an additional argument.

.. code-block:: python

# CASE 2: multiple validation dataloaders
def validation_step(self, batch, batch_idx, dataloader_idx):
    # dataloader_idx tells you which dataset this is.
    ...

!!! note If you don't need to validate you don't need to implement this method.

!!! note When the :meth:validation_step is called, the model has been put in eval mode and PyTorch gradients have been disabled. At the end of validation, the model goes back to training mode and gradients are enabled.

Source code in zamba/models/efficientnet_models.py
def validation_step(self, batch, batch_idx):
    x, y = batch
    y_hat = self(x)
    loss = F.binary_cross_entropy_with_logits(y_hat, y)
    self.log("val_loss", loss.detach())

    y_proba = torch.sigmoid(y_hat.cpu()).numpy()
    return {
        "y_true": y.cpu().numpy().astype(int),
        "y_pred": y_proba.round().astype(int),
        "y_proba": y_proba,
    }
validation_step_end(self, *args, **kwargs) -> Union[torch.Tensor, Dict[str, Any]] inherited

Use this when validating with dp or ddp2 because :meth:validation_step will operate on only part of the batch. However, this is still optional and only needed for things like softmax or NCE loss.

!!! note If you later switch to ddp or some other mode, this will still be called so that you don't have to change your code.

.. code-block:: python

# pseudocode
sub_batches = split_batches_for_dp(batch)
batch_parts_outputs = [validation_step(sub_batch) for sub_batch in sub_batches]
validation_step_end(batch_parts_outputs)

Parameters:

Name Type Description Default
batch_parts_outputs

What you return in :meth:validation_step for each batch part.

required

Returns:

Type Description
Union[torch.Tensor, Dict[str, Any]]

None or anything

.. code-block:: python

# WITHOUT validation_step_end
# if used in DP or DDP2, this batch is 1/num_gpus large
def validation_step(self, batch, batch_idx):
    # batch is 1/num_gpus big
    x, y = batch

    out = self.encoder(x)
    loss = self.softmax(out)
    loss = nce_loss(loss)
    self.log("val_loss", loss)


# --------------
# with validation_step_end to do softmax over the full batch
def validation_step(self, batch, batch_idx):
    # batch is 1/num_gpus big
    x, y = batch

    out = self(x)
    return out


def validation_step_end(self, val_step_outputs):
    for out in val_step_outputs:
        ...

See Also: See the :ref:advanced/multi_gpu:Multi-GPU training guide for more details.

Source code in zamba/models/efficientnet_models.py
def validation_step_end(self, *args, **kwargs) -> Optional[STEP_OUTPUT]:
    """Use this when validating with dp or ddp2 because :meth:`validation_step` will operate on only part of
    the batch. However, this is still optional and only needed for things like softmax or NCE loss.

    Note:
        If you later switch to ddp or some other mode, this will still be called
        so that you don't have to change your code.

    .. code-block:: python

        # pseudocode
        sub_batches = split_batches_for_dp(batch)
        batch_parts_outputs = [validation_step(sub_batch) for sub_batch in sub_batches]
        validation_step_end(batch_parts_outputs)

    Args:
        batch_parts_outputs: What you return in :meth:`validation_step`
            for each batch part.

    Return:
        None or anything

    .. code-block:: python

        # WITHOUT validation_step_end
        # if used in DP or DDP2, this batch is 1/num_gpus large
        def validation_step(self, batch, batch_idx):
            # batch is 1/num_gpus big
            x, y = batch

            out = self.encoder(x)
            loss = self.softmax(out)
            loss = nce_loss(loss)
            self.log("val_loss", loss)


        # --------------
        # with validation_step_end to do softmax over the full batch
        def validation_step(self, batch, batch_idx):
            # batch is 1/num_gpus big
            x, y = batch

            out = self(x)
            return out


        def validation_step_end(self, val_step_outputs):
            for out in val_step_outputs:
                ...

    See Also:
        See the :ref:`advanced/multi_gpu:Multi-GPU training` guide for more details.
    """
xpu(self: ~T, device: Union[int, torch.device] = None) -> ~T inherited

Moves all model parameters and buffers to the XPU.

This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.

.. note:: This method modifies the module in-place.

Parameters:

Name Type Description Default
device int

if specified, all parameters will be copied to that device

None

Returns:

Type Description
Module

self

Source code in zamba/models/efficientnet_models.py
def xpu(self: T, device: Optional[Union[int, device]] = None) -> T:
    r"""Moves all model parameters and buffers to the XPU.

    This also makes associated parameters and buffers different objects. So
    it should be called before constructing optimizer if the module will
    live on XPU while being optimized.

    .. note::
        This method modifies the module in-place.

    Arguments:
        device (int, optional): if specified, all parameters will be
            copied to that device

    Returns:
        Module: self
    """
    return self._apply(lambda t: t.xpu(device))
zero_grad(self, set_to_none: bool = False) -> None inherited

Sets gradients of all model parameters to zero. See similar function under :class:torch.optim.Optimizer for more context.

Parameters:

Name Type Description Default
set_to_none bool

instead of setting to zero, set the grads to None. See :meth:torch.optim.Optimizer.zero_grad for details.

False
Source code in zamba/models/efficientnet_models.py
def zero_grad(self, set_to_none: bool = False) -> None:
    r"""Sets gradients of all model parameters to zero. See similar function
    under :class:`torch.optim.Optimizer` for more context.

    Args:
        set_to_none (bool): instead of setting to zero, set the grads to None.
            See :meth:`torch.optim.Optimizer.zero_grad` for details.
    """
    if getattr(self, '_is_replica', False):
        warnings.warn(
            "Calling .zero_grad() from a module created with nn.DataParallel() has no effect. "
            "The parameters are copied (in a differentiable manner) from the original module. "
            "This means they are not leaf nodes in autograd and so don't accumulate gradients. "
            "If you need gradients in your forward method, consider using autograd.grad instead.")

    for p in self.parameters():
        if p.grad is not None:
            if set_to_none:
                p.grad = None
            else:
                if p.grad.grad_fn is not None:
                    p.grad.detach_()
                else:
                    p.grad.requires_grad_(False)
                p.grad.zero_()